• Title/Summary/Keyword: Air change efficiency

Search Result 352, Processing Time 0.03 seconds

Air-staging Effect for NOx Reduction in Circulating Fluidized Bed Combustion of Domestic Unused Biomass (국내 미이용 바이오매스 순환유동층 연소에서 NOx 저감을 위한 air-staging 효과)

  • Yoon, Sang-Hee;Beak, Geon-Uk;Moon, Ji-Hong;Jo, Sung-Ho;Park, Sung-Jin;Kim, Jae-Young;Seo, Myung-Won;Yoon, Sang-Jun;Yoon, Sung-Min;Lee, Jae-Goo;Kim, Joo-Sik;Mun, Tae-Young
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • Air emission charge for nitrogen oxide as a precursor of fine dust has been introduced and implemented within the country from 2020. Therefore, the development of economical combustion technology for NOx reduction has got more needed urgently. This study investigated the air-staging effect as a way to reduce the NOx during combustion of domestic unused forest biomass, recently possible to secure REC (Renewable Energy Certification) as a substitute for overseas wood pellets in a 0.1 MWth circulating fluidized bed combustion test-rig. Operating conditions were comparison with and without air-staging, the supply position of tertiary air (6.4 m, 8.1 m, 9.4 m in the combustor) and variation of air-staging ratio (Primary air:Secondary air:Tertiary air=91%:9%:0%, 82%:9%:9%, 73%:9%:18%). NO and CO concentrations in flue gas, profiles of temperature and pressure at the height of the combustion, unburned carbon in sampled fly ash and combustion efficiency on operating conditions were evaluated. As notable results, NO concentration with air-staging application under tertiary air supply at 9.4 m in the combustor reduced 100.7 ppm compared to 148.8 ppm without air-staging while, CO concentration increased from 52.2 ppm without air-staging to 99.8 ppm with air-staging. However, among air-staging runs, when tertiary air supply amount at 6.4 m in the combustor increased by air-staging ratio (Primary air:Secondary air:Tertiary air=73%:9%:18%), NO and CO concentrations decreased the lowest 90.8 ppm and 66.1 ppm, respectively. Furthermore, combustion efficiency at this condition was improved to 99.3%, higher than that (98.3%) of run without air-staging.

분배계통에 따른 지하주차장 환기설비 성능의 예측

  • 김경환;이재헌;오명도;김종필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.982-992
    • /
    • 2001
  • In this paper, the performance of ventilation equipments in enclosed parking garages were investigated for several air distribution systems by numerical method. Air change effectiveness of the non-mixing system was 0.42. It meant that more supply air as much as the design supply air was needed to maintain good indoor air quality. In the high speed nozzle ventilating system which is most expensive one, air change effectiveness was 0.54. Therefore this system satisfied to ventilation design. In the jet fan ventilating systems, air change effectiveness for jet fan ventilating system-A with 18 jet fans and jet fan ventilating system-B with 6 jet fans in circulation mixing arrangement were 0.565 and 0.42 respectively. Jet fan ventilating system-C with 6 jet fans in transport mixing arrangement was 0.535. Jet fan ventilating system-A and jet fan ventilating system-C met the ventilation design. But velocity in jet fan ventilating system-A was over 2.0m/s which is inappropriate in human comfort. Therefore this system is not proper to ventilation. Jet fan ventilating system-C was the optimum one for enclosed parking garages among 5 systems examined in this paper.

  • PDF

A Study on the Turbulent Flow Characteristics of Swirl Jets for Improvement of Combustion Efficiency (연소효율 개선을 위한 스월제트의 난류유동 특성에 관한 연구)

  • Ko, Dong Guk;Yoon, Suck Ju
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.75-81
    • /
    • 2014
  • Swirl flow in the gun type burner has a decisive effect on the stabilization of the flame, improvement of the combustion efficiency, and also a reduction of NOx. This swirl flow is created by the spinner which is inside the airtube that guide the combustion air. Gun type burner has generally the inner devices composed nozzle adapter, spark gap ignitor, and spinner. These inner components change the air flow behavior passing through air tube. Meanwhile, turbulent characteristics of this air flow are important to understand the combustion phenomena in the gun type burner, because the mixture of fuel and air are depended on. However, nearly all of the studies have been analyzed the turbulent flow of simplified combustion formation without the inner devices. So, this study conducted the measurement using by hot-wire anemometer and analyzed turbulent flow characteristics of the swirl flow discharged from the air tube with inner devices. Turbulence characteristics come up in this study were turbulence intensity, kinetic energy and shear stress of the air flow with the change of the distance of axial direction from the exit of the air tube.

Influence on the Thermal Environment by Change of Indoor-air Volume of Plastic Greenhouse with Hot Air Heating Systems (온풍난방을 채용한 3연동 플라스틱 하우스의 실내공기용적 변화가 하우스 온열환경에 미치는 영향)

  • Jeon, Sam-Chae;Li, Chang-Su;Na, Su-Yeun;Huh, Jong-Chul;Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • Relatively being economical in installation and easy in operation, hot-air heating system has been generally used in greenhouse for heating system regardless of high cost in maintenance and uneven distribution of air temperature. Therefore to overcome the disadvantages in maintenance and in distribution of air temperature and to improve efficiency of heating system, this experimental study is performed. This experimental study aims to improve the character of uneven temperature distribution in vertical direction and to reduce energy consumption for heating in a greenhouse. The experiment had been performed to investigate change of thermal environment and effects on reducing energy consumption for heating in greenhouse by additional surface insulation and reduction of indoor-air volume that come by installing transparent vinyl membranes with different height in each house. The results show that there is a wide difference in oil-energy consumption between houses according to condition of surface insulation and change of indoor-air volume. Furthermore, the results show that the efficiency of dual surface is higher than that of change of indoor-air volume in terms of energy saving.

Determination of an Optimum Orbiting Radius for an Oil-Less Scroll Air Compressor

  • Kim, Hyun-Jin;Lee, Yong-Ho;Kwon, Tae-Hun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.124-129
    • /
    • 2008
  • Design practice has been made on an oil-less scroll air compressor as an air supply device for a 2 kW fuel cell system where air pressure of 2 bar and flow rate of 120 liter/min are required. Basic structure of the scroll compressor includes double-sided scroll wrap for the orbiting scroll driven by two crankshafts connected to each other by a timing belt. These features can eliminate thrust surface which otherwise would produce frictional heat and jeopardize reliable operation of the orbiting scroll and the scroll element's deformation as well. This study focuses on optimum scroll wrap design; orbiting radius has been chosen as an independent design parameter. As the orbiting radius changes, scroll sizes such as scroll base plate and discharge port diameters change accordingly. Gas compression-related losses and mechanical loss also change with the orbiting radius. With a scroll base plate diameter of 120mm at most and discharge port of at least 10mm, the orbiting radius should be within the range of 2.5-4.0mm. With this range of the orbiting radius, it was estimated by performance analysis that the compressor efficiency reached to a maximum of ${\eta}_c$=96% at the orbiting radius of $r_s$=3.5mm for the scroll wrap height-to-thickness ratio of h/t=5.

Strategies for International Aviation to Respond to Climate Change (국제민간항공분야의 기후변화 대응 전략 연구)

  • Yoo, Kwang Eui
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.313-318
    • /
    • 2018
  • The growth rate of international aviation is expected to be higher than that of most industries and the proportion of carbon emissions from the aviation industry will become very significant as the year 2050 approaches. Constraining the growth of this industry is not desirable because it is essential for human welfare as well as the development of related industries. However, reduction of carbon due to aviation is not easy because it is difficult to improve fuel efficiency in a significant way. The ICAO (International Civil Aviation Organization), which is the main organization responsible for handling this problem, developed a program named CORSIA (Carbon Offsetting and Reduction Scheme for International Aviation). The present study analyzes various strategies for countries and airlines to comply with CORSIA using a fuel-efficient system. We conclude that countries should improve their airspace utilization systems, airport facilities, and air navigation systems. Additionally, based on the results of a flight data analysis, airlines should improve their operational efficiency in terms of operations control, flight operation, and maintenance management.

A Study on Engine Performance Characteristics with Scavenging Condition Variation in 2-Stroke Diesel Engine (2행정 디젤엔진의 소기조건 변화에 따른 엔진의 성능특성에 관한 연구)

  • Kim, Gi-Bok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.259-264
    • /
    • 2019
  • In this study, we experiment by making and designing of compression ignition diesel engine witch has air cooling, 2-cylinder and 2-strokes. Also, we make controller witch can control injection timing and period by arbitrary manual operation for change of injection timing. We also study experimentally in change about pressure and power of combustion chamber by increasing density of air which comes into cylinder because of increasing scavenging pressure. Through this, we confirmed that output change and scavenging pressure can develop performance of the engine by scavenging efficiency of a chamber and development of volume efficiency.

Environmental Evaluation of Sediment Quality for Small Scale Marine Ranch around the Gunsan Coastal Areas (군산해역에 있어서 소규모 바다목장화를 위한 해양저질 환경 평가)

  • Kim, Jong-Hwa;Kim, Jong-Kyu;Park, Byung-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.3
    • /
    • pp.508-519
    • /
    • 2008
  • Hot air drying is a method that let moistures evaporate by heat exchange between heating air and dry target. This way is dominating more than about 70% of dryers that the use extent is wide fairly, and is established in domestic than dryer that use conduction or radiation etc. Most of research about drying had been emphasized in size of device through analysis for these dry phenomenon plain, heating topology, and aspect of form and so on by dry target's special quality, and research about device development or waste heat withdrawal technology in energy utilization efficiency side is slight real condition. Therefore, in this study, Investigated numerically about thermal efficiency elevation that is leaned against as that change the temperature of inlet and outlet in heat exchanger of the hot air drying tower.

Collection Performance of an Electret Cabin Air Filter for Fine Particles (자동차용 정전 필터의 미세 입자 포집 특성)

  • Ji, Jun-Ho;Kang, Suk-Hoon;Kim, Dong-Choul;Hwang, Jung-Ho;Yoon, Woong-Sup;Bae, Gwi-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.85-90
    • /
    • 2001
  • This work presents experimental results of filter media test by using particles from $0.02\;to\;0.6{\mu}m$ in diameter and by applying different charging states. In order to investigate the electret filter performance, the collection efficiency and the pressure drop of filter were measured. The face velocities of test filters varied from 2.4 to 20.4 cm/s. Another experiment setup for the cartridge cabin air filter was used to get an collection efficiency in submicron region. After charging level of electret filter severely decreased, the change of collection efficiency was verified. Experimental results show that the reliability of electret filters can be poor in some conditions.

  • PDF

Development of mass aerosol particle generator and fabrication of commercial anti-viral air filter (대용량 입자 발생 장치 개발 및 이를 이용한 항바이러스 공조용 공기필터 제조)

  • Park, Dae Hoon;Joe, Yun Haeng;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.151-159
    • /
    • 2016
  • Since airborne viruses have been known to aggravate indoor air quality, studies on development of anti-viral air filter increase recently. In this study, a mass aerosol particle generator for coating a commercial air filter (over $300{\times}300mm^2$) was built, and evaluated by comparing a commercial particle generator. Then, via this device, a commercial air filter was coated with anti-viral material ($SiO_2-Ag$ nanoparticles in this study), so fabrication of commercial anti-viral air filter was performed and the pressure drop, filtration efficiency, and anti-viral ability of the filter were evaluated against aerosolized bacteriophage MS2 in a continuous air flow condition. The result showed that the particle generation of the new generator was more than about 8.5 times over which of the commercial one. Consequently, $SiO_2-Ag$ particle coating on a filter does not have significant effects on the filtration efficiency and pressure drop with different areas, and the average anti-viral efficiency of the $SiO_2-Ag$ filter was about 92% when the coating areal density was $1.0{\times}10^{12}particles/m^2$.