• 제목/요약/키워드: Air abrasion

검색결과 106건 처리시간 0.023초

An Experimental Study of the Performance Characteristics with Four Different Rotor Blade Shapes on a Small Mixed-Type Turbine

  • Cho Soo-Yong;Cho Tae-Hwan;Choi Sang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1478-1487
    • /
    • 2005
  • A small mixed-type turbine with a diameter of 19.9 mm has been substituted for a rotational part of pencil-type air tool. Usually, a vane-type rotor is applied to the rotational part of the air tool. However, the vane-type rotor has some problems, such as friction, abrasion, and necessity of accurate assembly etc.,. These problems make the life time of the vane-type air tool short, but air tools operated by mixed-type turbines are free of friction and abrasion because the turbine rotor dose not contact with the casing. Moreover, it is assembled easily because of no axis offset. These characteristics are merits for using air tools, but loss of power is inevitable on a non-contacting type rotor due to flow loss, tip clearance loss, and profile loss etc.,. In this study, four different rotors are tested, and their characteristics are investigated by measuring the specific output power. Additionally, optimum nozzle location against the rotor is studied. Output powers are obtained through measured pressure, temperature, torque, rotational speed, and flow rate. The experimental results obtained with four different rotors show that the rotor blade shape greatly influences to the performance, and the optimum nozzle location exists near the mid span of the rotor.

Effects of air-abrasion pressure on the resin bond strength to zirconia: a combined cyclic loading and thermocycling aging study

  • Al-Shehri, Eman Z.;Al-Zain, Afnan O.;Sabrah, Alaa H.;Al-Angari, Sarah S.;Dehailan, Laila Al;Eckert, George J.;Ozcan, Mutlu;Platt, Jeffrey A.;Bottino, Marco C.
    • Restorative Dentistry and Endodontics
    • /
    • 제42권3호
    • /
    • pp.206-215
    • /
    • 2017
  • Objectives: To determine the combined effect of fatigue cyclic loading and thermocycling (CLTC) on the shear bond strength (SBS) of a resin cement to zirconia surfaces that were previously air-abraded with aluminum oxide ($Al_2O_3$) particles at different pressures. Materials and Methods: Seventy-two cuboid zirconia specimens were prepared and randomly assigned to 3 groups according to the air-abrasion pressures (1, 2, and 2.8 bar), and each group was further divided into 2 groups depending on aging parameters (n = 12). Panavia F 2.0 was placed on pre-conditioned zirconia surfaces, and SBS testing was performed either after 24 hours or 10,000 fatigue cycles (cyclic loading) and 5,000 thermocycles. Non-contact profilometry was used to measure surface roughness. Failure modes were evaluated under optical and scanning electron microscopy. The data were analyzed using 2-way analysis of variance and ${\chi}^2$ tests (${\alpha}=0.05$). Results: The 2.8 bar group showed significantly higher surface roughness compared to the 1 bar group (p < 0.05). The interaction between pressure and time/cycling was not significant on SBS, and pressure did not have a significant effect either. SBS was significantly higher (p = 0.006) for 24 hours storage compared to CLTC. The 2 bar-CLTC group presented significantly higher percentage of pre-test failure during fatigue compared to the other groups. Mixed-failure mode was more frequent than adhesive failure. Conclusions: CLTC significantly decreased the SBS values regardless of the air-abrasion pressure used.

라이오셀방적사의 꼬임수에 따른 담요직물의 압축특성과 마모강도 (The Effect of Number of Twists of Lyocell Yarns on Compression Property and Abrasion Resistance Blanket Fabrics)

  • 송민규
    • 한국의류산업학회지
    • /
    • 제8권3호
    • /
    • pp.363-369
    • /
    • 2006
  • In this the study, Lyocell fabrics for blanket were developed to get high value added goods for elder and Infant. Therefore, the purpose of the study was determine the effect of twist per inch on the physical properties of developed fabrics, including compression property and abrasion resistance on the process for making Lyocell combined yarns. For comparison, commonly used cotton blanket was used. The results were as the follows: 1) Dimensional changes of Lyocell fabrics was in -3% which value was pretty stable, and antistatic property was very good with 10V of electric propensity voltage which means there was no static electricity at all. Pilling property of Lyocell fabrics showed 3 grade which was good and air permeability and moisture vapor transmission rate of Lyocell fabrics were higher than those of cotton fabric and keeping warmth rate of Lyocell fabrics was about 50% which means it very warms. 2) Twist per inch of Lyocell combined yarns increased with tensile strength and elongation of Lyocell fabrics. 3) Twist per inch of Lyocell combined yarns increased with decreasing thickness reduction rate and therefore, compression property of those was pretty good. Specially, compression property of Lyocell fabrics made with yarns of 3.9TPI was better than those of cotton fabric. 4) Twist per inch of Lyocell combined yarns increased with abrasion resistance of Lyocell fabrics.

세라믹 코팅이 기계 주조용 알루미늄합금(7075 T6)의 마찰ㆍ마모특성에 미치는 영향에 관한 연구 (A Study on the Influence of Ceramic Coating on Characteristics of Friction and Abrasion of Aluminum Alloy(7075 T6) Used in Mechanical Casting)

  • 류성기;정광조;로룡
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.14-21
    • /
    • 2003
  • This study deals with the influence of ceramic coating on characteristics of friction and abrasion of aluminum allot(7075 T6) used in mechanical casting. In this research, frictional wear characteristic of ceramic coating materials such as $A1_2O_3$, $Si_3N_4$, SiC was investigated using aluminum alloy(7075 T6) and stainless 403 cast iron under room temperature and normal air pressure. The coating layer was observed using SEM. The conclusions are as follows: 1) Friction coefficients of $A1_2O_3$, SiC and $Si_3N_4$ are obtained 0.63 0.56 and 0.54 respectively. 2) Abrasion resistance of stainless 403 cast iron with $Si_3N_4$ is the best among the ceramic coating materials. 3) Abrasion mechanism of aluminum alloy(7075 T6) coaled with ceramic material and stainless 403 cast iron is caused by brittle fracture. 4) Coating the ceramic material on the aluminum alloy(7075 T6) can effectively increase the antiwear, impact properties, and corrosion resistance.

Effect of surface treatment and luting agent type on shear bond strength of titanium to ceramic materials

  • Karaokutan, Isil;Ozel, Gulsum Sayin
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권2호
    • /
    • pp.78-87
    • /
    • 2022
  • PURPOSE. This study aimed to compare the effect of different surface treatments and luting agent types on the shear bond strength of two ceramics to commercially pure titanium (Cp Ti). MATERIALS AND METHODS. A total of 160 Cp Ti specimens were divided into 4 subgroups (n = 40) according to surface treatments received (control, 50 ㎛ airborne-particle abrasion, 110 ㎛ airborne-particle abrasion, and tribochemical coating). The cementation surfaces of titanium and all-ceramic specimens were treated with a universal primer. Two cubic all-ceramic discs (lithium disilicate ceramic (LDC) and zirconia-reinforced lithium silicate ceramic (ZLC)) were cemented to titanium using two types of resin-based luting agents: self-cure and dual-cure (n = 10). After cementation, all specimens were subjected to 5000 cycles of thermal aging. A shear bond strength (SBS) test was conducted, and the failure mode was determined using a scanning electron microscope. Data were analyzed using three-way ANOVA, and the Tukey-HSD test was used for post hoc comparisons (P < .05). RESULTS. Significant differences were found among the groups based on surface treatment, resin-based luting agent, and ceramic type (P < .05). Among the surface treatments, 50 ㎛ air-abrasion showed the highest SBS, while the control group showed the lowest. SBS was higher for dual-cure resin-based luting agent than self-cure luting agent. ZLC showed better SBS values than LDC. CONCLUSION. The cementation of ZLC with dual-cure resin-based luting agent showed better bonding effectiveness to commercially pure titanium treated with 50 ㎛ airborne-particle abrasion.

목공예적 가치평가를 위한 수종의 국내산 목재의 물리적 특성 평가 (Evaluation of the Physical Properties of Some Unused Domestic Woods Designed for Woodcraft Materials)

  • 장재혁;권성민;권구중;박병호;;김남훈
    • Journal of Forest and Environmental Science
    • /
    • 제26권2호
    • /
    • pp.131-136
    • /
    • 2010
  • In an effort to evaluate the qualities of the unused woods designed for art materials, Yellow pine, Pitch pine, Suwon poplar, Platanus and Cherry grown in Korea has been investigated in the study. Physical and mechanical properties such as density, hardness, roughness, and abrasion of the woods were examined. Among the five species, Cherry wood showed the highest density in green, air-dried and oven-dried conditions. Hardness of Cherry wood was higher than those of Suwon poplar and Platanus. In softwoods, Pitch pine showed greater hardness than Yellow pine. Yellow pine and Platanus had the highest values of wood surface roughness. Abrasion value of cross, radial and tangential sections was the highest in Yellow pine and Suwon poplar. It has been concluded from the experiment that physical and mechanical properties such as density, hardness, roughness, and abrasion of the woods can be used as an indicator of the suitability for woodcraft material.

Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics

  • Park, Joon-Ho;Choi, Yu-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권4호
    • /
    • pp.275-284
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate the influence of different surface treatment methods on the microtensile bond strength of resin cement to resin nanoceramic (RNC). MATERIALS AND METHODS. RNC onlays (Lava Ultimate) (n=30) were treated using air abrasion with and without a universal adhesive, or HF etching followed by a universal adhesive with and without a silane coupling agent, or tribological silica coating with and without a universal adhesive, and divided into 6 groups. Onlays were luted with resin cement to dentin surfaces. A microtensile bond strength test was performed and evaluated by one-way ANOVA and Tukey HSD test (${\alpha}$=.05). A nanoscratch test, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy were used for micromorphologic analysis (${\alpha}$=.05). The roughness and elemental proportion were evaluated by Kruskal-Wallis test and Mann-Whitney U test. RESULTS. Tribological silica coating showed the highest roughness, followed by air abrasion and HF etching. After HF etching, the RNC surface presented a decrease in oxygen, silicon, and zirconium ratio with increasing carbon ratio. Air abrasion with universal adhesive showed the highest bond strength followed by tribological silica coating with universal adhesive. HF etching with universal adhesive showed the lowest bond strength. CONCLUSION. An improved understanding of the effect of surface treatment of RNC could enhance the durability of resin bonding when used for indirect restorations. When using RNC for restoration, effective and systemic surface roughening methods and an appropriate adhesive are required.

Repair bond strengths of non-aged and aged resin nanoceramics

  • Subasi, Meryem Gulce;Alp, Gulce
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권5호
    • /
    • pp.364-370
    • /
    • 2017
  • PURPOSE. To explore the influence of different surface conditionings on surface changes and the influence of surface treatments and aging on the bond strengths of composites to non-aged and aged resin nanoceramics. MATERIALS AND METHODS. Rectangular-shaped non-aged and aged (5000 thermocycles) resin nanoceramic specimens (Lava Ultimate) (n=63, each) were divided into 3 groups according to surface treatments (untreated, air abrasion, or silica coating) (n=21). The surface roughness was measured and scanning electron microscopy was used to examine one specimen from each group. Afterwards, the specimens were repaired with a composite resin (Filtek Z550) and half were sent for aging (5000 thermocycles, n=10, each). Shear bond strengths and failure types were evaluated. Roughness and bond strength were investigated by two- and three-way analysis of variance, respectively. The correlation between the roughness and bond strength was investigated by Pearson's correlation test. RESULTS. Surface-treated samples had higher roughness compared with the untreated specimens (P=.000). For the non-aged resin nanoceramic groups, aging was a significant factor for bond strength; for the aged resin nanoceramic groups, surface treatment and aging were significant factors. The failures were mostly adhesive after thermal cycling, except in the non-aged untreated group and the aged air-abraded group, which had mostly mixed failures. Roughness and bond strength were positively correlated (P=.003). CONCLUSION. Surface treatment is not required for the repair of non-aged resin nanoceramic; for the repair of aged resin nanoceramic restorations, air abrasion is recommended.

Potassium oxalate와 Sodium fluoride의 상아질 지각과민 억제효과 (THE EFFECTIVENESS OF POTASSIUM OXALATE AND SODIUM FLUOIRIDE ON THE REDUCTION OF DENTINAL HYPERSENSITIVITY)

  • 서민수;박동수;정창모
    • Restorative Dentistry and Endodontics
    • /
    • 제16권1호
    • /
    • pp.216-225
    • /
    • 1991
  • The purpose of this study was to evaluate the desensitizing effect of potassium oxalate(Group I), sodium fluoride (Group II), and control group (Group III). The 120 teeth of 26 patients who had been complained dentinal hypersensitivity were divided into three groups by applicating agent. The observation was done before and immediately after treatment. The data were statistically analyzed and the results were as followed. 1. Potassium oxalate showed the best desensitizing effect to the stimuli, followed by sodium fluoride, control group, and there was a significant difference (p<0.05) in desensitizing effect among the groups. 2. Potassium oxalate showed the best desensitizing effect to the stimuli, followed by sodium fluride, control group on both cervical abrasion and gingival recession, and there was a significant difference (p<0.05) in desensitizing effect among the groups on both cervical abrasion and gingival recession. 3. There was no significant difference (p<0.05) in effect of the desensitization between cervical abrasion and gingival recession. 4. The scratch and air blast I were more effective in desensitiziation than other stimuli with significant difference (p<0.05). In view of the results mentioned above, it can be conceived that potassium oxalate is more effective than sodium fluoride on the reduction of dentinal hypersensitivity.

  • PDF

Effect of granite fines on mechanical and microstructure properties of concrete

  • Jain, Kishan Lal;Sancheti, Gaurav
    • Advances in concrete construction
    • /
    • 제13권6호
    • /
    • pp.461-470
    • /
    • 2022
  • Solid waste management is of great concern in today's world. An enormous amount of waste is generated from various industrial activities. Concrete production utilizing some of the potential waste materials will add to the benefit of society. These benefits will include reduction of landfill burden, improved air quality, riverbed protection due to excessive sand excavation, economical concrete production and much more. This study aims to utilize waste granite powder (GP) originating from granite industries as a sand replacement in concrete. Fine GP was collected in the form of slurry from different granite cutting industries. In this study, GP was added in an interval of ten percent as 10%, 20%, 30%, 40% and 50% by weight of sand in concrete. Mechanical assets; compressive strength, flexural strength and splitting tensile strength were prominent for control and blended mixes. Modulus of elasticity (MoE) and abrasion tests were also performed on control and blended specimens of concrete. To provide a comprehensive clarification for enhanced performance of GP prepared concrete samples, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed. Results indicate that 30% replacement of sand by weight with GP enhances the mechanical assets of concrete and even the results obtained for 50% replacement are also acceptable. Comprehensive analysis through SEM and XRD for 30% replacement was better than control one. The performance of GP added to concrete in terms of abrasion and modulus of elasticity was far better than the control mix. A significant outcome shows the appropriateness of granite fines to produce sustainable and environmentally friendly concrete.