• 제목/요약/키워드: Air Tank

검색결과 607건 처리시간 0.025초

Factors Affecting Process Temperature and Biogas Production in Small-scale Rural Biogas Digesters in Winter in Northern Vietnam

  • Pham, C.H.;Vu, C.C.;Sommer, S.G.;Bruun, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권7호
    • /
    • pp.1050-1056
    • /
    • 2014
  • This study investigated the main factors influencing digester temperature and methods to reduce heat losses during the cold season in the subtropics. Four composite digesters (two insulated and two uninsulated) were buried underground to measure their internal temperature ($^{\circ}C$) at a depth of 140 cm and 180 cm, biogas production and methane ($CH_4$) concentration in biogas from August to February. In parallel the temperature of the air (100 cm above ground), in the slurry mixing tank and in the soil (10, 100, 140, and 180 cm depth) was measured by thermocouple. The influent amount was measured daily and the influent chemical composition was measured monthly during the whole experimental period. Seasonal variations in air temperature significantly affected the temperature in the soil, mixing tank and digester. Consequently, biogas production, which is temperature dependent, was influenced by the season. The main factors determining the internal temperature in the digesters were insulation with Styrofoam, air temperature and temperature of slurry in the mixing tank. Biogas production is low due to the cold climate conditions in winter in Northern Vietnam, but the study proved that storing slurry in the mixing tank until its temperature peak at around 14:00 h will increase the temperature in the digester and thus increase potential biogas production. Algorithms are provided linking digester temperature to the temperature of slurry in the mixing tank.

육상 수조식 양식장의 해수 열원 히트펌프 시스템 적용을 위한 열부하 분석 (Thermal load analysis of tank culture system for applying seawater source heat pump)

  • 윤민기;김태훈;정석권
    • 수산해양기술연구
    • /
    • 제59권2호
    • /
    • pp.155-163
    • /
    • 2023
  • This study deals with the maximum thermal load analysis and optimal capacity determination method of tank culture system for applying seawater source heat pump to save energy and realize zero energy. The location of the fish farm was divided into four sea areas, and the heat load in summer and winter was analyzed, respectively. In addition, two representative methods, the flow-through aquaculture system and the recirculation aquaculture system were reviewed as water treatment methods for fish farms. In addition, the concept of the exchange rate was introduced to obtain the maximum heat load of the fish farms. Finally, power consumption for heat pumps was analyzed in the view point of sea areas, tank capacity, and exchange rate based on the calculated maximum thermal load.

플랜트 공사 중 발생한 Cone Roof Tank 붕괴 사고 원인 분석 (Cause Analysis of Cone Roof Tank Collapse during Plant Construction)

  • 김승한;김병석
    • 대한안전경영과학회지
    • /
    • 제18권3호
    • /
    • pp.71-80
    • /
    • 2016
  • This study is on safety improvement measures through analysis of accident cases during plant storage tank construction. Storage tank is a general term for artificial ground facility constructed to store oil, water, gas, and other chemicals. Some companies have clustered storage tanks (tank farm). The construction methods vary according to the component and types of fluids. Because most of the construction procedures include lifting heavy weight materials using heavy construction equipment and are carried out at high places, storage tank construction contains more risk factors than normal aerial construction. Recently, major accidents such as storage tank collapse have occurred often, and cost many lives due to the characteristics of the structure. In this study we would like to analyze the cause of these accidents and propose measures to improve safety.

Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

  • Zou, Chang-Fang;Wang, De-Yu;Cai, Zhong-Hua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.670-690
    • /
    • 2015
  • In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

승용차량용 연료탱크 슬로싱 현상에 대한 실험적 고찰 및 평가 방법에 대한 연구 (Experimental Study and Evaluation Method for Sloshing Noise of Fuel Tank on Passenger Vehicle)

  • 안세진;윤성호
    • 한국소음진동공학회논문집
    • /
    • 제24권6호
    • /
    • pp.444-451
    • /
    • 2014
  • The signal patterns of slosh noise produced by the fuel tank of a passenger vehicle are characterized by analyzing vehicle interior noise, fuel tank vibration, and near-field noise radiated from the fuel tank. This paper also shows the noise transfer path analysis results performed from the fuel tank to the vehicle inside. On top of them, physical index is described, demonstrating a good correlation with subjective feeling of slosh noise. It is essential to identify the main noise transfer paths for redesigning of the fuel tank system aiming at reducing slosh noise and also helpful to apply physical index in evaluating and reducing this noise. It is found that structure-borne path is the main root of slosh noise and a value reveals a good correlation with subjective feeling.

축열조를 이용한 냉매과냉각 시스템의 전력수요관리 효과에 대한 연구 (A Study on the DSM Effect of a Refrigerant-Subcooling Refrigeration System with an Ice Storage Tank)

  • 김정배;이은지;이동원
    • 설비공학논문집
    • /
    • 제22권12호
    • /
    • pp.845-851
    • /
    • 2010
  • This study was experimentally performed to find the effects of refrigerant subcooling in the refrigeration system and to propose how to get the efficient use of energy. A refrigerant-subcooling refrigeration system consisted of a typical single vapor-compression refrigeration cycle, a subcooler, and an ice storage tank. The degree of subcooling at the exit of the condenser can be increased by the heat transfer between the subcooler and the ice storage tank. The cold heat in the ice storage tank was stored by using the refrigeration cycle during night time and then used to absorb the heat from the subcooler during daytime. The cooling capacity and COP of this system were higher than those of the conventional system due to the increase in the degree of subcooling. Typically, the refrigerant-subcooling system showed superior performance to the conventional refrigeration system and would also contribute to load leveling.

상변화물질을 적용한 핀-관 열교환기의 열전달 성능 특성에 관한 실험적 연구 (An Experimental Study on the Heat Transfer Characteristics of a Finned-Tube Heat Exchanger in a PCM Thermal Energy Storage System)

  • 정동일;장민;김용찬
    • 설비공학논문집
    • /
    • 제28권1호
    • /
    • pp.15-20
    • /
    • 2016
  • Phase change materials (PCM) are able to store a large amount of latent heat, and can be applied to thermal energy storage systems. In a PCM, it takes a long time to store heat in the storage system because of the low thermal conductivity. In this study, a finned-tube-in-tank heat exchanger was applied to a PCM thermal energy storage system to increase heat transfer efficiency. The effects of geometric and operating parameters were investigated, and the results were compared with those of the tube-in-tank heat exchanger. The finned-tube-in-tank heat exchanger showed higher heat transfer effectiveness than the tube-in-tank heat exchanger. The heat exchange effectiveness of the storage tank was determined as a function of the average NTU.

소형저장탱크의 가스발생능력에 관한 연구 (A Study on the Prediction of the Maximum Evaporation Rates from LPG Storage Tanks)

  • 이경식;유광수;조영도;박교식
    • 한국가스학회지
    • /
    • 제10권1호
    • /
    • pp.7-12
    • /
    • 2006
  • 소형저장탱크를 이용한 벌크공급시스템은 LP가스의 공급이 중단되거나 공급량이 부족하지 않도록 LP가스 사용가구의 최대가스소비량을 초과하는 가스량을 발생시켜 공급할 수 있어야 한다. 이때 벌크공급시스템에서 공급할 수 있는 가스량은 소형저장탱크의 가스발생능력이 되며, 소형저장탱크의 선정기준이 된다. 현재 우리나라는 소형저장탱크의 충전량, 연속사용시간 등에 따른 가스발생능력 산정기준이 없어 LP가스 사용가구수에 대하여 적합한 소형저장탱크의 선정이 어려운 상태로서 소형저장탱크의 원활한 보급에 문제가 되고 있다. 본 연구는 소형저장탱크의 선정기준이 되는 가스발생능력을 충전량, 외기온도, 연속사용시간 및 충전조성 등에 따라 산정하여 제시하고자 한다.

  • PDF

Numerical Investigation on Freezing in Ballast Tank of Ship Navigating in Ice-bound Sea

  • Kang, Ho-Keun;Kim, Ki-Pyoung;Ahn, Soo-Whan
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.95-102
    • /
    • 2013
  • For vessels operating in the cold climate regions, the ballast water inside or hopper tanks above the waterline may be frozen, starting at the top of the tank and at the side walls. Therefore, countermeasures against freeze-up of the ballast tank such as air-bubbling system, hot steam injecting system, heating coil system and water circulating system are taken to prevent freeze-up phenomenon; however, there are no rigorous investigations of anti-freezing to examine the effectiveness and validity of systems against freeze-up of the ballast tank, in which the temperatures are about $-25^{\circ}C$ (ambient air temperature) and $0^{\circ}C$ (sea water), respectively. In this paper, to ensure reasonable specifications for cold regions if the measures from the above-mentioned systems against freeze-up are effective, the phenomenon of ballast tank freeze-up is simulated and discussed in low temperature conditions. With the results using the commercial CFD code, CFX 14, the most cost-effective solution is conducted to prevent being frozen along the outer surface.