Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13534

Factors Affecting Process Temperature and Biogas Production in Small-scale Rural Biogas Digesters in Winter in Northern Vietnam  

Pham, C.H. (Ministry of Agriculture and Rural Development, National Institute of Animal Sciences)
Vu, C.C. (Ministry of Agriculture and Rural Development, National Institute of Animal Sciences)
Sommer, S.G. (Institute of Chemical Engineering, Bio- and Environmental Engineering, Faculty of Engineering, University of Southern)
Bruun, S. (Department of Plant and Environment, Faculty of Science, University of Copenhagen)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.27, no.7, 2014 , pp. 1050-1056 More about this Journal
Abstract
This study investigated the main factors influencing digester temperature and methods to reduce heat losses during the cold season in the subtropics. Four composite digesters (two insulated and two uninsulated) were buried underground to measure their internal temperature ($^{\circ}C$) at a depth of 140 cm and 180 cm, biogas production and methane ($CH_4$) concentration in biogas from August to February. In parallel the temperature of the air (100 cm above ground), in the slurry mixing tank and in the soil (10, 100, 140, and 180 cm depth) was measured by thermocouple. The influent amount was measured daily and the influent chemical composition was measured monthly during the whole experimental period. Seasonal variations in air temperature significantly affected the temperature in the soil, mixing tank and digester. Consequently, biogas production, which is temperature dependent, was influenced by the season. The main factors determining the internal temperature in the digesters were insulation with Styrofoam, air temperature and temperature of slurry in the mixing tank. Biogas production is low due to the cold climate conditions in winter in Northern Vietnam, but the study proved that storing slurry in the mixing tank until its temperature peak at around 14:00 h will increase the temperature in the digester and thus increase potential biogas production. Algorithms are provided linking digester temperature to the temperature of slurry in the mixing tank.
Keywords
Digester Temperature; Air and Soil Temperature; Insulation; Season; Simple Biogas Digester;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Perrigault, T., V. Weatherford, J. Marti-Herrero, and D. Poggio. 2012. Towards thermal design optimization of tubular digesters in cold climates: A heat transfer model. Bioresour. Technol. 124:259-268.   DOI   ScienceOn
2 Pham, C. H., J. M. Triolo, and S. G. Sommer. 2013. Models for predicting methane production in simple and unheated biogas digesters. Applied Energy (Submitted).
3 Rehm, H. J., G. Reed, A. Puhler, and P. J. W. Stadler. 2000. Biotechnology, vol. 11A: Environmental processes I, 2nd ed., Wiley, New York, USA.
4 Singh, J. B., M. R. Myles, and A. Dhussa. 1987. Manual on Deenbandhu Biogas Plant. Tata McGraw-Hill. New Delhi, India.
5 Sodha, M. S., S. Ram, N. K. Bansal, and P. K. Bansal. 1987. Effect of PVC greenhouse in increasing the biogas production in temperature cold climate conditions. Energy Convers. Manag. 27:83-90.   DOI   ScienceOn
6 Sommer, S. G., S. O. Petersen, O. Sorensen, H. D. Poulsen, and H. B. Moller. 2007. Methane and carbon dioxide emissions and nitrogen turn-over during liquid manure storage. Nutr. Cycl. Agroecosyst. 78:27-36.   DOI
7 Wu, B. and E. L. Bibeau. 2006. Development of 3-D anaerobic digester heat transfer model for cold weather applications. Trans. ASABE 49:749-757.   DOI
8 Zar. J. H. 1984. Biostatistical Analysis, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ, USA.
9 Zhang, L. Z. Yang, B. Chen, and G. Chen. 2009. Rural energy in China: pattern and policy. Renew. Energy 34:2813-2823.   DOI   ScienceOn
10 Katterer, T. and O. Andren. 2009. Predicting daily soil temperature profiles in arable soils in cold temperature regions from air temperature and leaf area index. Acta Agriculturae Scandinavica Section B Soil Plant Sci. 59:77-86.
11 Khoiyangbam, R. S., S. Kumar, M. C. Jain, N. Gupta, A. Kumar, and V. Kumar. 2004. Methane emission from fixed dome biogas plants in hilly and plain regions of northern India. Bioresour. Technol. 95:35-39.   DOI   ScienceOn
12 Kossmann, W., U. Ponitz, and S. Habermehl. 1997. Biogas digest: Biogas application and product development (Volume II). Information and Advisory Service on Appropriate Technology (ISAT) & GATE in Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ).
13 Lahav, O., B. E. Morgan, and R. E. Loewenthal. 2002. Rapid, simple and accurate method for measurement of VFA and carbonate alkalinity in anaerobic reactors. Environ. Sci. Technol. 36:2736-2741.   DOI   ScienceOn
14 Ma, J., L. Yu, C. Frear, Q. Zhao, X. Li, and S. Chen. 2013. Kinetics of psychrophilic anaerobic sequencing batch reactor treating flushed dairy manure. Bioresour. Technol. 131:6-12.   DOI   ScienceOn
15 Marti-Herrero, J. 2007. Transfer of low-cost plastic biodigester technology at household level in Bolivia. Livest. Res. Rural. Dev. 19(12). http://www.lrrd.org/lrrd19/12/mart19192.htm Accessed August 28, 2013.
16 Moller, H. B., S. G. Sommer, and B. K. Ahring. 2004. Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26:485-495.   DOI   ScienceOn
17 Monod, J. 1949. The growth of bacterial cultures. Annu. Rev. Microbiol. 3:371-394.   DOI   ScienceOn
18 Nguyen, D. L., T. K. Nguyen, and K. Q. Nguyen. 2010. Questions and answers about biogas technologies. Vietnam Agric. Publishing House.
19 Park, K. H. and C. W. Riddle. 2010. Methane emission patterns from stored liquid wwine manure. Asian Australas. J. Anim. Sci. 23:1229-1235.   DOI   ScienceOn
20 Gavala, H., I. Angelidaki, and B. Ahring. 2003. Kinetics and modeling of anaerobic digestion process. In: Biomethanation I (Eds. B. Ahring, I. Angelidaki, E. C. Macario, H. N. Gavala, J. Hofman-Bang, A. J. I. Macario, S. J. W. H. O. Elferink, L. Raskin, A. J. M. Stams, P. Westermann, and D. Zheng). Springer, Berlin Heidelberg, Germany. pp. 81:57-93.   DOI
21 Grau, P., M. Dohanyos, and J. Chudoba. 1975. Kinetics of multicomponent substrate removal by activated sludge. Water. Res. 9:637-642.   DOI   ScienceOn
22 Hillel, D. 1982. Introduction to Soil Physics. Academic Press, San Diego, CA, USA.
23 Hill, D. T. 1984. Methane productivity of the major animal waste types. Trans. ASAE. 27:530-534.   DOI
24 Hobson, P. N., S. Bousfield, R. Summers, and P. J. Mills. 1980. Anaerobic digestion of piggery and poultry wastes. In: Anaerobic digestion (Eds. B. E. Stafford, B. I. Wheatley, and D. E. Hughes). Applied Science Publishers, London.
25 Huixian, S. H. I., P. E. I. Xiaomei, Z. H. U. Hongguang, L. U. O. Zhongyang, W. A. N. G. Tao, R. O. N. G. Ling, and L. I. Yongming. 2009. How to compensate the lost temperature of the digester in cold climate. Proceedings of the international conference on power engineering 09 (ICOPE-09) November 16-20, 2009; Kobe, Japan. pp.185-190.
26 IPCC. 1997. Guidelines for national greenhouse gas inventories: reference manual. Revised 1996. IPCC Guidelines.
27 Kalia, A. K. and S. P. Singh. 1998. Horse dung as a partial substitute for cattle dung for operating family-size biogas plants in a hilly region. Bioresour. Technol. 64:63-66.   DOI   ScienceOn
28 Kalia, A. K. and S. S. Kanwar. 1998. Long term evaluation of a fixed dome Janata biogas plant in hilly conditions. Bioresour. Technol. 65:61-63.   DOI   ScienceOn
29 Bruun, S., L. S. Jensen, T. K. V. Vu, and S. G. Sommer. 2014. Small-scale household biogas digesters: An option for global warming mitigation or a potential climate bomb? Renew. Sust. Energy Rev. 33:736-741.   DOI   ScienceOn
30 Bhattacharya, S. C. and C. Jana. 2009. Renewable energy in India: Historical developments and prospects. Energy 34:981-991.   DOI   ScienceOn
31 Chen, Y. R. and A. G. Hashimoto. 1978. Kinetics of methane fermentation. Biotech. Bioeng. Symp. 8:269-282.
32 Cu, T. T. T., H. C. Pham, T. H. Le, V. C. Nguyen, X. A. Le, X. T. Nguyen, and S. G. Sommer. 2012. Manure management practices on biogas and non-biogas pig farms in developing countries - using livestock farms in Vietnam as an example. J. Clean. Prod. 27:64-71.   DOI   ScienceOn
33 Garfi, M., L. Ferrer-Marti, I. Perez, X. Flotats, and I. Ferrer. 2011. Codigestion of cow and guinea pig manure in low-cost tubular digesters at high altitude. Ecol. Eng. 37:2066-2070.   DOI   ScienceOn
34 Gautam, R., S. Baral, and S. Heart. 2009. Biogas as a sustainable energy source in Nepal: Present status and future challenges. Renew. Sustain. Energy Rev. 13:248-252.   DOI   ScienceOn
35 Jiang, X., S. G. Sommer, and K. V. Christensen. 2011. A review of the biogas industry in China. Energy Policy 39:6073-6081.   DOI   ScienceOn
36 Yu, L., K. Yaoqiu, H. Ningsheng, W. Zhifeng, and X. Lianzhong. 2008. Popularizing house-house scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation. Renew. Energy 33:2027-2035.   DOI   ScienceOn
37 Hansen, T. L., S. G. Sommer, S. Gabriel, and H. T. Christensen. 2006. Methane production during storage of anaerobically digested municipal organic waste. J. Environ. Qual. 35:830-836.   DOI   ScienceOn