• Title/Summary/Keyword: Air Supply System

Search Result 881, Processing Time 0.036 seconds

A study on the evaluation of fire safety according to the ventilation mode in a train fire at the subway platform (지하철 승강장에서 열차 화재시 제연모드에 따른 화재 안전성 평가 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.293-310
    • /
    • 2020
  • The purpose of this study is to present the most effective smoke exhaust mode by comparing the quantitatively evaluated risks according to the smoke exhaust mode when a train fire occurs in a subway platform. Therefore, applying the typical subway platform as a model, train fire scenarios are developed with the evacuation start time and location of the fire train for each exhaust mode. The fire accident rates (F) are calculated and the number of fatalities (N) was quantitatively estimated by fire analysis and evacuation analysis for each scenario. In addition, the F/N curve compared with the social risk assessment criteria and the following conclusions were obtained. In the event of a train fire at the subway station platform, the evacuation must start up within 600 s in maximum to ensure the evacuees' safety. To secure evacuation safety, it is advantageous to operate the HVAC system of the platform in the air-supply mode at station without TVF. Comparing the F/N curve for each exhaust mode with the social risk criteria, it turned out that the risk significantly exceeds the social risk criteria in case of no mechanical ventilation. As a result, this paper shows that the ventilation mode in which TVF are exhausted and HVAC system is operated in the pressurized mode are the most effective smoke exhaust mode for ensuring evacuation safety.

Strain Improvement and Bioprocess Optimization for Enhanced Production of Haluronic Acid(HA) in Bioreactor Cultures of Streptococcus zooepidemicus (히알루론산 생산성 향상을 위한 Streptococcus zooepidemicus 균주 개량 및 발효조 배양공정 최적화)

  • Kim, Soo Yeon;Chun, Gie-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.344-357
    • /
    • 2020
  • Strain improvement and bioprocess development were undertaken to enhance hyaluronic acid(HA) production by Streptococcus zooepidemicus cells. Using a high-yielding mutant strain, statistical medium optimization was carried out in shake flask cultures, resulting in 52% increase in HA production (5.38 g/l) at the optimal medium composition relative to the parallel control cultures. For sufficient supply of dissolved oxygen (DO), which turned out to be crucial for enhanced production of HA, agitation system and speed were intensively investigated in 5 L bioreactor cultures. Increase in oxygen mass transfer coefficient (kLa) through increment of agitation speed (rpm) and 35% expansion of diameter of the newly-designed impellers showed significantly positive effects on HA production. By installing an expanded Rushton-turbine impeller for efficient break-down of sparged air, and an extended marine impeller above the Rushton-turbine impeller for efficient mixing of the air-born viscous fermentation broth, maximum amount of HA (9.79 g/l) was obtained at 450 rpm, 1.8 times higher level than that of the corresponding flask culture. Subsequently, the possibility of bioprocess scale-up to a 50 L bioreactor was investigated. Despite almost identical maximum HA production (9.11 vs 9.25 g/l), the average HA volumetric productivity (rp) of the 50 L culture turned out only 74% compared to the corresponding 5 L culture during the exponential phase, possibly caused by shear damages imposed on the producing cells at the high stirring in the 50 L culture. The scale-up process could be successfully achieved if a scale-up criterion of constant oxygen mass transfer coefficient (kLa) is applied to the 50 L pilot-scale bioreactor system.

Implications of Shared Growth of Public Enterprises: Korea Hydro & Nuclear Power Case (공공기관의 동반성장 현황과 시사점: 한국수력원자력(주) 사례를 중심으로)

  • Jeon, Young-tae;Hwang, Seung-ho;Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.4 no.2
    • /
    • pp.57-75
    • /
    • 2021
  • KHNP's shared growth activities are based on such public good. Reflecting the characteristics of a comprehensive energy company, a high-tech plant company, and a leading company for shared growth, it presents strategies to link performance indicators with its partners and implements various measures. Key tasks include maintaining the nuclear power plant ecosystem, improving management conditions for partner companies, strengthening future capabilities of the nuclear power plant industry, and supporting a virtuous cycle of regional development. This is made by reflecting the specificity of nuclear power generation as much as possible, and is designed to reflect the spirit of shared growth through win-win and cooperation in order to solve the challenges of the times while considering the characteristics as much as possible as possible. KHNP's shared growth activities can be said to be the practice of the spirit of the times(Zeitgeist). The spirit of the times given to us now is that companies should strive for sustainable growth as social air. KHNP has been striving to establish a creative and leading shared growth ecosystem. In particular, considering the positions of partners, it has been promoting continuous system improvement to establish a fair trade culture and deregulation. In addition, it has continuously discovered and implemented new customized support projects that are effective for partner companies and local communities. To this end, efforts have been made for shared growth through organic collaboration with partners and stakeholders. As detailed tasks, it also presents fostering new markets and new industries, maintaining supply chains, and emergency support for COVID-19 to maintain the nuclear power plant ecosystem. This reflects the social public good after the recent COVID-19 incident. In order to improve the management conditions of partner companies, productivity improvement, human resources enhancement, and customized funding are being implemented as detailed tasks. This is a plan to practice win-win growth with partner companies emphasized by corporate social responsibility (CSR) and ISO 26000 while being faithful to the main job. Until now, ESG management has focused on the environmental field to cope with the catastrophe of climate change. According to KHNP is presenting a public enterprise-type model in the environmental field. In order to strengthen the future capabilities of the nuclear power plant industry as a state-of-the-art energy company, it has set tasks to attract investment from partner companies, localization and new technologies R&D, and commercialization of innovative technologies. This is an effort to develop advanced nuclear power plant technology as a concrete practical measure of eco-friendly development. Meanwhile, the EU is preparing a social taxonomy to focus on the social sector, another important axis in ESG management, following the Green Taxonomy, a classification system in the environmental sector. KHNP includes enhancing local vitality, increasing income for the underprivileged, and overcoming the COVID-19 crisis as part of its shared growth activities, which is a representative social taxonomy field. The draft social taxonomy being promoted by the EU was announced in July, and the contents promoted by KHNP are consistent with this, leading the practice of social taxonomy

Changes of Physico-chemical Characteristic on Swine Manure Using Different Suction Strength in Composting System (돈분 퇴비화 시 공기 흡입 강도에 따른 이화학적 특성변화)

  • Lee, Dong-Jun;Kim, Jung Kon;Jeong, Kwang-Hwa;Kawg, Jung-Hoon;Ravindran, B.;Lee, Ji-Woong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.59-67
    • /
    • 2017
  • The aim of this experiment was to investigate the effect of air suction rate (SR) during the composting process of swine manure mixed with sawdust used as a bulking agent. In the 25 L composting reactors, the suction rate (SR) was at four different treatment levels (100%, 200%, 300%, 400%), and were fixed on the based on constant aeration rate into the composting mixtures. The temperature reached to thermophilic phase within 2 days and it was maintained up to the $5^{th}$ day of the composting process in all reactors and then gradually decreased to room temperature at the end of the composting process. The moisture content (MC, %) of the initial mixtures was 64.27%, and it was reduced to 38.4, 33.08, 14.59 and 11.93 in the different suction rate of 100%, 200%, 300%, 400%, respectively in the end process. During the composting, the level of pH was increased from 6.83 to 8.67 and it gradually decreased to 7.56 in 100% and 200%(SR). At the same time, the pH values were reduced only up to 8.19 at 300%, and 8.08 at 400%(SR), showing that suction strengths of 100% and 200% were the better option for composting than those of 300% and 400%. The total Kjeldahl nitrogen (TKN) of initial composts mixtures was 2.3% and were changed in 3.3, 3.1, 2.5, and 2.3% at the end of the composting period from the 100%-400% (SR) variations respectively. These results also indicated that 100% and 200% (SR) were more affected by the dry mass loss as $CO_2$ and water evaporation. The initial value of C/N ratio was 25.17 and were significantly reduced to 11.88, 11.97, 14.31, and 14.72 at the end of the experiment, respectively from the 100%-400% (SR) variations. These results suggest that the suction rate (SR) of 100% and 200% relative to constant air supply would be the optimal conditions to produce high-quality compost.

A Study on the Hood Performance Improvement of Pickling Tank using CFD (전산유체역학을 이용한 산세조 후드 성능 개선에 관한 연구)

  • Jung, Yu-Jin;Park, Ki-Woo;Shon, Byung-Hyun;Jung, Jong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.593-601
    • /
    • 2014
  • In this study, we investigated the methods of improving the capturing ability of acid fume by assessing the performance of slot-type external hood installed on both sides of an open surface tank for acid washing process. A field survey and the results of computational fluid dynamics revealed that capturing performance of existing hoods is very poor. To solve such problem, 'push-pull hood' that pushes from one side of an open surface tank and pulls on the other side was suggested. The initial prediction was that if a push-pull hood is used, the acid fume of an acid-washing tank surface could be moved towards the hood through the push flow. However, this study has confirmed that if the push flow velocity becomes too high, it could spread to other areas due to flooding from the hood. Therefore, if the push air supply is maintained at around 25 $m^3/min$(push 10 m/s), proper control flow is formed on the surface of a tank and acid fume that stayed at the upper part of the tank is smoothly captured toward the hood, significantly enhancing the capturing performance.

Biological Pump in the East Sea Estimated by a Box Model (상자 모형으로 추정한 동해의 생물 펌프)

  • Kim, Jae-Yeon;Kang, Dong-Jin;Kim, Eung;Cho, Jin-Hyung;Lee, Chang-Rae;Kim, Kyung-Ryul;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.295-306
    • /
    • 2003
  • Recently efforts are underway to analyze the impacts of anthropogenic $CO_2$ on the global environments and the amount of oceanic uptake increase. The East Sea is now viewed as a miniature ocean because its circulation pattern is similar to the ocean conveyer belt. The biological pump of the East Sea is a vital component to understand the carbon cycle quantitatively. In this paper, the biological pump is estimated utilizing the stoichiometric ratio between carbon and phosphorus. A simple phosphate budget model is constructed based on the seawater and dissolved oxygen box model that can simulate the recent structural change in deep water circulation of the East Sea. A model run from you 1952 to 2040 shows the steadily intensifying biological pump. Currently it exports about 0.016 Pg C yr$^{-1}$ , which corresponds to 35% of the carbon introduced into the seawater by the air-sea exchange. An increased oxygen supply to the central water mass as a result of from the transition in the ventilation system might enhance the remineralization of sinking biogenic particles. This should strengthen the upward nutrient flux into the surface layer. Consequently, the biological sequestration of anthropogenic carbon is expected to increase with time. The estimated biological uptake of the anthropogenic carbon in the East Sea since the Industrial Revolution is estimated as 0.025 Pg C.

PHENOL DERIVATIVES EFFECTS ON GLUTAMIC ACID FERMENTATION (Phenol 유도체 처리가 Glutamin산 생성균의 발효증가에 미치는 영향에 대하여)

  • RHO Yung Jae;LEE Kyung Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.95-102
    • /
    • 1979
  • Brevibacterium flavum treated with phenol derivatives, guaiacol and o-vanillin has been revealed the marked increased ability in glutamic acid fermentation as 14.2 g/l in o-vanillin treated, 12.5 g/l in guaiacol treated while the 7.0 g/1 in nontreated cell. The increased ability of phenol derivatives treated cells in glutamic acid fermentation was ascribed to the formation of charge-transfer complex between phenols and oxygen. The charge-transfer complex effectively supply the oxygen to the fermention system in spite of high potential gradient in oxygen transfer formed by high cell concentration as insulator on film of air-liquid interface.

  • PDF

Mission Analysis Involving Hall Thruster for On-Orbit Servicing (궤도상 유지보수를 위한 홀추력기 임무해석)

  • Kwon, Kybeom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.791-799
    • /
    • 2020
  • Launched in October 2019, Northrop Grumman's MEV-1 was the world's first unmanned mission demonstrating the practical feasibility of on-orbit servicing. Although the concept of on-orbit servicing was proposed several decades ago, it has been developed to various mission concepts providing services such as orbit change, station keeping, propellant and equipment supply, upgrade, repair, on-orbit assembly and production, and space debris removal. The historical success of MEV-1 is expected to expand the market of on-orbit servicing for government agencies and commercial sectors worldwide. The on-orbit servicing essentially requires the utilization of a highly propellant efficient electric propulsion system due to the nature of the mission. In this study, the space mission analysis for a simple on-orbit mission involving Hall thruster is conducted, which is life extension mission for geostationary orbit satellites. In order to analyze the mission, design space exploration for various Hall thruster design variable combinations is performed. The values of design variables and operational parameters of Hall thruster suitable for the mission are proposed through design space analysis and optimization, and mission performance is derived. In addition, the direction of further improvement for the current on-orbit mission analysis process and space mission analysis involving Hall thruster is reviewed.

A Study on the Improvement Strategy of Reuse and Recycling of Home Appliances Waste (폐가전제품의 재이용 및 재활용 활성화 방안에 관한 연구)

  • Park, Chan-Hyuk;Chung, Jae-Chun;Lee, Jae-Woong;Kim, Young-Jun;Choi, Suk-soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.74-85
    • /
    • 2003
  • The purpose of this study is to investigate present situation of recovery and treatment of waste home appliances, and to supply basic data for active reuse and recycling of waste home appliances. Among waste home appliances, refrigerator comprise 30.7%, television 37.8%, washing machine 22.9% and air conditioner 0.3%. Local government collected 46.2% of waste home appliances, producer and agent collected 49.7%, recycling center 4.1%. Seventeen percentage of waste home appliances are reused, 65% are recycled, and 18% are landfilled or incinerated. To improve the recycling activity of waste of home appliances, it is important to establish private reuse and recycling organization. It is also necessary to improve waste deposit and refund system for efficient recycling by decent financial support. Extension of a term of usage is another method to minimize waste home appliances. Finally, intensive education for consumer is necessary for waste minimization. Some portion of recycling and treatment cost can be allocated to the local government and large private business can shred and recycle waste home appliances.

  • PDF

An Empirical Evaluation Scheme for Pedestrian Environment by Integrated Approach to TOD Planning Elements (TOD 계획 요소의 통합적 접근을 통한 친보행 환경의 평가 방안)

  • Joo, Yong-Jin;Ha, Eun-Ji;Jun, Chul-Min
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.15-25
    • /
    • 2012
  • In order to resolve transportation system focused on vehicles which have led to all sorts of problems such as traffic congestion, air pollution and so on, Korea recently have tended to center around Transit Oriented Development(TOD) which is capable of initiating public traffic demands. It is imperative to develop objective evaluation method which is able to measure pedestrian environment and amenity in order to facilitate green transit. The purpose of this paper is to present evaluation indices and measurement framework of pedestrian environment by analyzing effect on TOD major planning factors such as diversity, density, design, and supply etc. For this, we applied evaluation index with regard to TOD planning factors, investigating connection to pedestrian and employed AHP (Analytic Hierarchy Process) so as to quantify the result of measurement in Jongro 3ga and Hangangjin station. As a result, we presented relationship between travel patterns of pedestrian and each TOD planning factor. More importantly, the proposed framework is expected to make the best of the visualization as well as evaluation method for the pedestrian accessibility, convenience of public transportation, and the mixed land-use patterns in subway area and transit center.