• Title/Summary/Keyword: Air Source Heat Pump

Search Result 282, Processing Time 0.024 seconds

Application study of heat storage type GSHP system in Apartment building with central cooling and heating facilities using life cycle cost analysis (LCC 분석을 이용한 중앙공급식 공동주택의 수축열식 지열원 히트펌프시스템의 적용연구)

  • Lee, Sang-Hoon;Park, Jong-Woo;Cho, Sung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1497-1502
    • /
    • 2009
  • The present study has been conducted economic analysis of heat storage type ground source heat pump system(HSGSHP) and normal ground source heat pump (GSHP) and central boiler system with individual air conditioning facility which are installed at the same building in the shared an apartment house. Cost items, such as initial construction cost, annual energy cost and maintenance cost of each system are considered to analyze life cycle cost (LCC) and simple payback period (SPP) with initial cost different are compared. The initial cost is a rule to the Government basic unit cost of production. LCC applied present value method is used to assess economical profit of both of them. Variables used to LCC analysis are prices escalation rate and interest rate mean values of during latest 10 years. The LCC result shows that HSGSHP (1,351,000,000won) is more profitable than central boiler system with individual air conditioning facility by 86.7% initial cost. And SPP appeared 8.0 year overcome the different initial cost by different annual energy cost.

  • PDF

Investigation and Analysis on the present state of Geothermal Source Heat Pump System Applied in Korea (지열히트펌프 시스템의 국내 적용현황 조사 및 분석)

  • Choi, Mi-Young;Ko, Myeong-Jin;Kim, Yong-Shik;Park, Jin-Chul;Rhee, Eon-Ku
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.267-272
    • /
    • 2009
  • This study aims to investigate and analyze the present state of ground source heat pump(GSHP) system applied in Korea. It is based on the statistic from the New and Renewable Energy Center in Korea and construction results of the professional companies registered to the center. The research items were installed area, installed year, building use, ground heat exchange type and heat exchanger type of the pump. According to the result of investigation, the using GSHP system have been increasing steadily as the space heating and cooling system in a building. The capacity of this system is also becoming lager based on technical and economical feasibility analysis about the system since GSHP system first introduced in 2000.

Numerical Analysis for the Effect of Ground and Groundwater Conditions on the Performance of Ground Source Heat Pump Systems (토양 및 지하수 조건이 지열공조시스템의 성능에 미치는 영향에 관한 수치 해석적 연구)

  • Nam, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.321-326
    • /
    • 2011
  • Recently, ground source heat pump (GSHP) systems have been introduced in many modem buildings which use the annually stable characteristic of underground temperature as one of the renewable energy uses. However, all of GSHP systems cannot achieve high level of energy efficiency and energy-saving, because their performance significantly depends on thermal properties of soil, the condition of groundwater, building loads, etc. In this research, the effect of thermal properties of soil on the performance of GSHP systems has been estimated by a numerical simulation which is coupled with ground heat and water transfer model, ground heat exchanger model and surface heat balance model. The thermal conductivity of soil, the type of soil and the velocity of groundwater flow were used as the calculation parameter in the simulation. A numerical model with a ground heat exchanger was used in the calculation and, their effect on the system performance was estimated through the sensitivity analysis with the developed simulation tool. In the result of simulation, it founds that the faster groundwater flow and the higher heat conductivity the ground has, the more heat exchange rate the system in the site can achieve.

Economic Feasibility of Various HVAC Systems for Commercial Building and Comparison of Energy Tariffs between Korea and USA (업무시설용 건물 적용 복합 지열원 공조시스템의 경제성 평가 및 한미 요금 비교)

  • Koh, Jae-Yoon;Park, Yool;Seo, Dong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.599-607
    • /
    • 2008
  • In this study, air conditioning systems include ground source heat pump (GSHP), are evaluated for economic feasibility. The building is modeled an air conditioned for 280kW scale. This analysis is compared with the energy tariff programs of Korea and USA. The objectives of this paper are to evaluate the cost-effectiveness of the GSHP and combined system using Life-Cycle Cost (LCC) analysis, and to carry out the sensitivity analysis of key parameters. The paper considered the cases including the base case of air source heat pump and the other two alternates for comparisons. The combined system is not only a cost-effective way to the low energy consumption but also a way to avoid a high initial investment. The variations of initial investment and energy rates give a significant effect on the total LCC and payback period.

A study on performance test of water heat storage type heat-pump system using cooling tower heat source (냉각탑을 이용한 축열식 히트펌프시스템의 성능측정에 관한 연구)

  • Lee, Sang-Hoon;Park, Hyo-Sik;Han, Woo-Yong;Kim, Uk-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1099-1104
    • /
    • 2008
  • Recent year, mean energy consumptions of a people are higher than other country. And international oil price became over 120 dollar. This energy environment as well as energy war. Maybe, the Meteorological Administration is going to enforce scorching heatwave special report system from that come summer. Besides, 2008 summer, maximum demand power is expected by 64,240,000kW. The electric power equipment reserve rate appeared in to keep 12.5% level. Chilled water storage system witch is one of electric load administration system. Heat pump system used cooling tower heat recovery is advantage that use is possible to summer in small a public bath building. In this paper, we suggest that heat pump system by heat recovery using cooling tower when it is heating operation of ambient air temperature. To apply cooling tower heat recovery heat pump to chilled water heat storage type and achieved performance evaluation about operation. As a result, performance of heat pump system that about 121% in cooling mode, 138% in heating mode higher than KEPCO standard. And heating operation possible to ambient air temperature about $23^{\circ}C$, which of appear cooling tower outlet temperature about $13^{\circ}C$.

  • PDF

A study on the Heat Transfer Performance according to Ground Heat Exchanger Types (지중열교환기의 종류에 따른 열전달 성능에 관한 연구)

  • Hwang, SuckHo;Song, Doosam
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.75-80
    • /
    • 2010
  • Generally, ground-source heat pump (GSHP) systems have a higher performance than conventional air-source systems. However, the major fault of GSHP systems is their expensive boring costs. Therefore, it is important issue that to reduce initial cost and ensure stability of system through accurate prediction of the heat extraction and injection rates of the ground heat exchanger. Conventional analysis methods employed by line source theory are used to predict heat transfer rate between ground heat exchanger and soil. Shape of ground heat exchanger was simplified by equivalent diameter model, but these methods do not accurately reflect the heat transfer characteristics according to the heat exchanger geometry. In this study, a numerical model that combines a user subroutine module that calculates circulation water conditions in the ground heat exchanger and FEFLOW program which can simulate heat/moisture transfer in the soil, is developed. Heat transfer performance was evaluated for 3 different types ground heat exchanger(U-tube, Double U-tube, Coaxial).

Performance of Heat Pump System Using Underground Air as Heat Source (지하공기를 이용하는 농업시설용 난방시스템)

  • Kang, Youn-Ku;Ryou, Young-Sun;Kim, Young-Hwa;Sung, Moon-Seok;Kim, Jong-Koo;Jang, Jae-Kyoung;Lee, Hyoung-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.587-589
    • /
    • 2009
  • The districts of underground geologic structure in Jeju island where underground air is distributed are lava cave, pyroclastic, open joint, and crushing zone. Such districts are identified to secure an enough airflow when air ventilation layer is to secure 25-35m in depth. In Jeju, Ground air is used for heating greenhouse and fertilizing natural $CO_2$ gas by suppling directly into greenhouse. But the heating method by suppling ground air into greenhouse directly bring about several problem. The occurrence of disease of the crops by high humidity is worried because the underground air which becomes discharge from underground air layer has over 90% relative humidity. The underground air is inadequate in heating for crops which need high temperature heating such as mangos, Hallbong and mandarin orange because the temperature of it is $15{\sim}18^{\circ}C$. Also There is worry where the ventilation loss becomes larger because the air pressure inside greenhouse is high by supplying underground air directly. In this study the heat pump system using underground air as heat source was developed and heating performance of the system was analysed. Heating COP of the system was 2.5~5.0 and rejecting heat into greenhouse and extracting heat from underground air were 40,000~27,000 kcal/h, 30,000~18,000 kcal/h respectively.

  • PDF

An Economic Analysis of a Secondary Waste Heat Recovery Geothermal Heating System (2단 가열식 지열시스템의 경제성 분석)

  • Shin, Jeong Soo;Kim, Sean Hay
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.249-258
    • /
    • 2017
  • This paper provides an economic analysis of a new geothermal heat pump system that reuses condenser waste heat from a Ground Source Heat Pump ($GSHP_{ch}$) to provide energy for a hot water Ground Source heat pump ($GSHP_{hw}$). After conducting feasibility tests using GLD and TRNSYS simulations, the proposed system was effectively installed and thoroughly tested. We observe that 1) the Coefficient of Performance (COP) of the $GSHP_{hw}$ and the $GSHP_{ch}$ during cooling mode improves by up to 62% and 7%, respectively; 2) the number of bore holes can be reduced by two; and 3) the hot water supply temperature of the $GSHP_{hw}$ increases by up to $60^{\circ}C$. We further conclude that 1) the reduction of two bore holes can save approximately ten million Won from the initial cost investment; and 2) the increased COP of the $GSHP_{hw}$ can save approximately one million Won in annual electricity costs.

Ground Surface Temperature Distribution of Korea (우리나라 지표면 온도 분포)

  • Koo, Min-Ho;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.431-433
    • /
    • 2006
  • Accurate information on the ground surface temperature is essential for design of a borehole heat exchanger and thus ensuring the performance of a ground source heat pump system along with knowledge on thermal diffusivity and conductivity of ground. In this study we analyzed the shallow subsurface temperature monitoring data of 58 Korea Meteorological Administration synoptic stations. As a result, we compiled mean annual ground surface temperature distribution map using multiple regression analysis of the monitoring data.

  • PDF

Analysis and Verification of High Temperature Heat Pump Dryer using Waste Heat Recovery Type for R245fa Refrigerant (배기가스 배열을 활용한 R245fa 냉매용 고온 히트펌프 건조기의 해석 및 검증)

  • Bae, Kyung-Jin;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • In this study, the performance characteristics of a high temperature heat pump dryer that is able to raise the air temperature up to $80^{\circ}C$ by using waste heat as heat source were investigated numerically. The main components of the heat pump dryer were modeling as a compressor, condenser, evaporator and expansion device, and R245fa was selected as refrigerant. Experiments were also conducted to validate the numerical data. As a result, when the evaporator air inlet temperature increased from $50^{\circ}C$ to $65^{\circ}C$, the numerical results of the hot air temperature at outlet and heat pump COP were about 8~11% and 5~8% higher than that of experimental ones, respectively.