• Title/Summary/Keyword: Air Receiver

Search Result 170, Processing Time 0.021 seconds

Technical Trend of Receiver for Solar Power Tower (타워용 태양열발전 시스템 흡수기 기술동향)

  • Kim, Jong-Kyu;Kim, Jin-Soo;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.161-164
    • /
    • 2008
  • For the development of solar thermal power tower plant from the early 80' to today, various kinds of receiver have been tested and evaluated. Most of 1st generation receiver used water/steam as a working fluid to operate steam turbine and now the first commercial solar power tower PS-10 also makes saturated steam. However, to increase thermal efficiency of storage system and to obtain practical use of solar energy, molten salt system have been used from THEMIS project in France at 1984. The Solar Tres plant of 17 MWe power generation will be constructed in Spain and have plan to operate 24 hours in summer. The air volumetric receiver system can be integrated with combined cycle of gas turbine and HRSG and also with steam turbine easily. Therefore, related researches to develop higher efficient solar power tower plant and to operate with stable are widely performed in the world.

  • PDF

Solar Flux Calculation for Heat Transfer Modeling of Volumetric Receivers (체적식 흡수기의 열전달 모델링을 위한 태양 열유속 계산)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.223-228
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer modeling. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15 mm charmel length for the charmel radius smaller than 1.5 mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the charmel entrance region is overpredicted while the light penetrates more deeply into the charmel. The developed method will help understand the solar flux when only a part of concentrated light is of interest. Furthermore, if the presented results are applied for heat transfer modeling of multi-channeled volumetric solar receivers, one could examine effects of receiver charmel properties and shape on air temperature profiles.

  • PDF

Concentrated Solar Flux Modeling for the Heat Transfer Analysis of Multi-Channeled Solar Receivers (다채널 태양열 흡수기의 열전달 해석을 위한 집광 열유속 모델링)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer analysis. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15mm channel length for the channel radius smaller than 1.5mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the channel entrance region is over predicted while the light penetrates more deeply into the channel. Once the presented results are imported into the heat transfer analysis, one could examine effects of material property and geometry of the receiver on air temperature profiles.

Design and Performance Evaluation of Solar Air Receivers (공기식 태양열 흡수기의 설계 및 성능평가)

  • Cho, Hyun-Seok;Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.280-285
    • /
    • 2012
  • It is important to produce the high temperature and high pressure air for the concentrated solar power system using the combined cycle. In this paper, based on the concept of tubular receiver, we designed two types with focus on radiation loss reduction. These two receivers were tested in the KIER solar furnace of 40kW thermal capacity. Performance of the two receivers were evaluated and compared.

  • PDF

An Experimental Study on the Performance Characteristics of Cooling System for Aircraft External Reconnaissance Stores (항공기 외장형 정찰 장비용 냉각 시스템의 성능 특성에 관한 실험적 연구)

  • Jung, Daeyoon;Lee, Hang Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.74-80
    • /
    • 2013
  • In this paper, we have proposed a vapor cycle refrigeration system as a cooling system to provide cooling air to the aircraft external reconnaissance stores. In the proposed vapor cycle system, receiver which prevents refrigerant from subcooling was eliminated and thermal expansion valve was replaced with electronic expansion valve. The vapor cycle refrigeration system is aimed to provide cooling air to the reconnaissance stores which is added to the aircraft in the form of external store. The wide temperature range of ambient air from the flight conditions can decrease the cooling performance and can make the refrigeration system unstable in low ambient temperature. Performance characteristics of the vapor cycle refrigeration system has been experimented under air conditions which is derived from the flight envelope. From the experiments, the vapor cycle refrigeration system has been proved to provide enough cooling air to the reconnaissance equipment and to be stable under all the flight conditions.

High Temperature Solar Gas Heating by a Compact Fluidized-Bed Receiver of Open-Type (개방형 유동층을 이용한 태양광 고온가스 가열장치의 연구)

  • Choi, Jun-Seop
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.95-102
    • /
    • 1992
  • A small scale solar collector system composed of a Fresnel lens of $0.5m^2$ area as a solar concentrator and a compact fluidized-bed solar receiver was developed. Performance and temperature distribution in the fluidized bed receiver were measured using SiC for particles and air for working fluid. The maximum gas temperature was attained up to 1250K at this moment. In this study, energy efficiency achieved by the present experiment was high for the small scale solar collector system and compact receiver.

  • PDF

The Coupling Characteristics of THz Electromagnetic Wave using Copper Wire Waveguide (구리선 도파로를 이용한 THz 전자기파의 결합 특성)

  • Jeon, Tae-In;Ji, Young-Bin
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.290-295
    • /
    • 2006
  • The coupling between copper wire and a THz electromagnetic wave is one of the important factors to build up the magnitude and spectrum of a THz wave. We measured a I THz spectrum range THz pulse into a $480{\mu}m$ diameter and 23cm long copper wire waveguide. We measured THz pulses up to $275{\mu}m$ air gap between the end of the copper wire and transmitter or receiver chips. The coupling sensitivity of the transmitter is 3 times bigger than that of the receiver. The THz pulses propagated to air by the end of the receiver-side copper wire tip acting as a transmitter antenna. We confirmed that the THz field concentrates near the copper wire surface by opening the pin hole to the copper wire waveguide.

Modified WFRFT-based Transform Domain Communication System Incorporating with Spectrum Mismatching

  • Xu, Ruiyang;Da, Xinyu;Liang, Yuan;Hu, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4797-4813
    • /
    • 2018
  • The transform domain communication system (Hereinafter referred to as TDCS) takes on numerous advantages, inclusive of anti-jamming and low probability of detection. Yet its application is confined by the consistent spectrum in the transmitter and receiver, which is not possible in the case of a huge distance exsits between them. In this paper, a TDCS based modified weighted fractional fourier transform (WFRFT) is proposed to solve the problem resulting from spectrum mismatching for TDCS application. The amplitude and phase information are incorporated with the TDCS signals and transmit to the receiver together in the wake of a modified WFRFT. The basic function and the TDCS signals shall be accessible to the receivers in the wake of an inverse WFRFT transform, which make sure that the original information can be demodulated properly. The system's reliability while transmitting signals with different modulation methods and with spectrum mismatching is demonstrated by bit error rate (BER). In the meantime, the constellations of the signals and the BER performances at the eavesdropper demonstrate the proposed system is better secured.

Multi-antenna diversity gain in terrestrial broadcasting receivers on vehicles: A coverage probability perspective

  • Ahn, Sungjun;Lee, Jae-young;Lim, Bo-Mi;Kwon, Hae-Chan;Hur, Namho;Park, Sung-Ik
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.400-413
    • /
    • 2021
  • This paper theoretically and empirically explores the reliability gain that can be obtained by installing multiple antennas in on-vehicle broadcasting receivers. Analytical derivations reveal that maximal-ratio-combining-based diversity allows a multi-antenna receiver (MR) to achieve significantly better coverage probability than a single-antenna receiver (SR). In particular, the notable MR gains for low-power reception and high-throughput services are highlighted. We also discuss various aspects of mobile MRs, including geometric coverage, volume of the users served, and impact of receiver velocity. To examine the feasibility of MRs in the real world, extensive field experiments were conducted, particularly with on-air ATSC 3.0 broadcast transmissions. Relying on the celebrated erroneous second ratio criterion, MRs with two and four antennas were verified to achieve notable reliability gains over SRs in practice. Furthermore, our results also prove that layered-division multiplexing can cope better with receiver mobility than traditional time-division multiplexing when multiple services are intended in the same radio frequency channel.