• Title/Summary/Keyword: Air Nozzle System

Search Result 309, Processing Time 0.024 seconds

Technical Review and Analysis of Ramjet/Scramjet Technology I. Ramjet Engine (Liquid Ramjet, Ducted Rocket) (램제트/스크램제트의 기술동향과 소요기술 분석 I. 램제트 엔진(액체램제트, 덕티드로켓))

  • Sung Hong-Gye;Yoon Hyun-Gull
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.72-86
    • /
    • 2006
  • A technical review of current ramjet propulsion is presented. In addition to summarize the current status of ramjet technology, new key techniques like Boosting technique easily adapting total impulse of booster, flame stabilization technique with minimized ramjet combuster length, variable nozzle-inner-surface technique realizing wide flight-envelop, and thermal protection technique for long operating time are identified. Actually various Ramjet propulsion technology has been matured and expanding to both military and combined cycle application. Yet many opportunities remain to be challenged by future generations of explorers to utilize s typical ramjet propulsion system for multi-purpose(multi-platform and multi-target) missiles, for example, American JSSCM and Russian Yakhont missiles, improving both reliability of techniques and downsizing development cost of new propulsion system.

Development of a 2-fluid Jet Mixer for Preventing the Sedimentation in Livestock Liquid Manure Storage Tank (가축분뇨액비저장조 침전물 퇴적 방지를 위한 2류체 제트노즐식 교반장치 개발에 관한 연구)

  • Yu, B.K.;Hong, J.T.;Kim, H.J.;Kweon, J.K.;Oh, K.Y.;Park, B.K.
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.207-220
    • /
    • 2012
  • There are around 7,500 manure tanks to treat the manures from pigs in Korea. In the tank, there are too much sediments deposited on the base and wall, which causes low efficiency of stock capacity and manure fermentation. In order to minimize sediments and to ferment manure effectively, we developed a 2-fluid jet mixer for mixing sediments in liquid livestock manure tank. For developing the prototype, we tested a factorial experimental system with various nozzles, and simulated CFD models with two kinds of nozzle arrangement. From the results of factorial experiment and CFD simulation, we concluded the dia. ratio of primary : secondary nozzle should be 1:2 and the nozzles should be arranged at the same distances toward to the circumferential direction. With this results, we manufactured a 2-fluid jet mixer which is consists of four 2-phase nozzles, centrifugal slurry pump and root's type air blower. And, we carried out the performance test of the prototype in the round shaped liquid manure tank in the farm. The performance test results showed that the uniformity of TS (Total Solid) and VS (Volatile Solid) was raised from 21.3 g/L, 13.3 g/L In steady state to TS and VS to 23.0 g/L, 14.1 g/L in the mixing operation. Therefore, we could conclude that the prototype of 2-fluid mixer could make the solid material which could be sediments in the tank not to be deposited in the tank and to be contacted to air bubbles which could enhance the efficiency of the fermentation of livestock manure.

Patent Technologies for Reducing Micro-Dust (미세먼지 저감을 위한 특허기술들)

  • Cho, Taejun;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.9-14
    • /
    • 2020
  • Four developed patents have applied for a new type of Composite Cyclone Scrubber followed by the previous research (Cho and Kim, 2017), including dust reducing fan with filters. Regarding target installation and maintenance cost, 64% reduction for investment costs (6.2 billion won vs. 17 billion won) compared to existing road pollution reduction system, while social benefit costs increase by 43% compared to existing road pollution reduction measures (72.6 billion won vs. 50.8 billion won). The composition of the device is an air blower type spiral guide vane, and an injection pressure collecting dust efficiency. A nozzle varies Injection angle and contact range, spray liquid species (waterworks, salty water). The proposed patent tests are circulation water Time-by-Time Spray and collected 41.4% more increased micro dust since the sprayed water meets contaminated gas due to the 45° degree colliding, which is 141% increased conventional dust collector. (Ratio of collection over 85%). As regards the source of collection liquid, circulated rainwater and well water, we expect a huge amount of energy and economically saved eco-friendly system in our patent. Finally, the guided vane and metal filter reduced over 90% micro-dust, while sprayed water cleans the vane and filters, resultantly minimizing the maintenance budget. The preliminary evaluations of the developed design make it possible to reduce not only cheaper maintenance budget due to the characteristic water spraying but the cost of water comes from mainly rain and underground.

Hydrodynamics and Liquid Flow Characteristics in an Internal Circulation Airlift Reactor using a Single Nozzle (단일노즐을 사용한 내부순환 공기리프트 반응기에서 수력학과 액체의 흐름특성)

  • Kim, Jong-Chul;Jang, Sea-Il;Son, Min-Il;Kim, Tae-Ok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.816-821
    • /
    • 1997
  • The hydrodynamics and the liquid flow characteristics were investigated in an internal circulation airlift reactor with a single nozzle as a gas distributor. In an air-water system, the gas holdup in the individual flow zone and the impulse-response curve of tracer were measured at various gas velocities and reactor heights. Experimental results showed that for the higher gas velocity(>about 8 cm/s), the flow behavior of bubbles in the riser was turbulent flow due to strong bubble coalescences and the axial height of dispersion zone of large bubbles having uniform sizes in the downcomer was decreased with increasing gas velocity. And mean gas holdups in the individual flow zone and the reactor were increased with increasing gas velocities and were decreased with increasing heights of the top section of the reactor and it was decreased with increasing the height of the top section and gas velocity. Flow characteristics of liquid in the riser and the downcomer was tend to access to plug flow and the overall flow behavior of liquid was mainly varied with the size of the top section which it was assumed to be perfect mixing zone. In these conditions, liquid circulation velocities were increased with increasing gas velocities and they were higher than those by using other gas distributors.

  • PDF

Encapsulation of Agro-Probiotics for Promoting Viable Cell Activity (생균력 증진을 위한 농업용 미생물제 미세캡슐화)

  • Choi, So-Young;Yoon, Min-Ho;Whang, Kyung-Sook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.287-293
    • /
    • 2005
  • In this work, to develop soil inoculant which maintains stable viable cells and normalized quality, studies on micro-encapsulation with bacteria and yeast cells were performed by investigating materials and methods for micro-encapsulation as well as variation and stability of encapsulated cells. Preparation of capsule was conducted by application of extrusion system using micro-nozzle and peristaltic pump. K-carragenan and Na-alginate were selected as best carrier for gelation among K-carageenan, Na-alginate, locust bean gum, cellulose acetate phthalate (CAP), chitosan and gelatin tested. Comparing the gels prepared with Bacillus sp. KSIA-9 and carriers of 1.5% concentration, although viable cell of K-carragenan and Na-alginate was six times higher than those of other, Na-alginate was finally selected as carrier for gelation because it is seven times cheaper than K-carragenan. The gel of 1.5% Na-alginate was also observed to have the best morphology with circular hardness polymatrix and highest viable cell. When investigating the stability of encapsulated cells and the stabilizer effect, free cells were almost dead within 30 or 40 days whereas encapsulated cells decreased in 10% after 30 days and 15-30% even after 120 days. As stabilizer for maintaining viable cell, both 1% starch and zeolite appeared to possess the level of 70-80% cell for bacteria and yeast until after 120 days.

Design of Gun Launched Ramjet Propelled Artillery Shell with Inviscid Flow Assumption (비점성 유동을 가정한 포 발사 램제트 추진탄 설계)

  • Kang, Shinjae;Park, Chul;Jung, Woosuk;Kwon, Taesoo;Park, Juhyeon;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.52-60
    • /
    • 2015
  • Operation area of corps was expanded under military reformation, and extending range of 155 mm howitzer became important issue. New approach is needed to extend range to 80 kim. Ramjet engine is air breathing engine, and it can provide specific impulse several times more than solid rocket motor so that range is extended using same weight of propellant. If the ramjet engine is gun-launched system, it does not require any other booster because muzzle velocity is near Mach 3. Especially solid fuel ramjet (SFRJ) does not have any moving part so that it is favorable for gun-launching system which is under high stress during launching. In this paper, we design air intake, combustion chamber, and nozzle of 155 mm gun launched ramjet propelled artillery shell with inviscid flow assumption. We conduct parameter study to have range more than 80 km, and maximum high explosive volume.

The Development of a Cryotherapy System (한냉물리치료기의 개발)

  • Kim, Yeong-Ho;Yang, Gil-Tae;Jang, Yun-Hui;Park, Si-Bok;Ryu, Jin-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.617-622
    • /
    • 1998
  • A cryotherapy system using cold air was developed. The developed system had superior low-temperature characteristics with various flow rates and nozzle sizes, and used R-404A, as a coolant, which has no destructive effects of Ozone layers. Flow rates and the treatment time can be easily altered during the operation. In addition, and alarm system was designed for the overload, overheat, and over-charge of the machine. For clinical applications, skin temperatures, intra-articular temperatures of the knee joint and intra-muscluar temperatures of the gluteal muscles were measured during and after the cryotherapy. After a 5-minute therapy, skin and intra-articular temperatures decreased by $23.3{\pm}4.7 and 4.1 {\pm}1.0^{circ}C$, respectively. A 5-minute cryotherapy was good enough to maintain low intra-articular temperatures for 2-3 hours. Resting intra-muscular temperatures in 2, 4, and 6cm deep in the gluteal muscle were $36.5{\pm}1.2, 36.9{\pm}0.2, 37.1{\pm}0.2^{circ}C$, respectively (p<0.05). Lowest temperatures in 2, 4, and 6cm depth were $35.1{\pm}0.7, 36.2{\pm}0.4, 36.9{\pm}0.3^{circ}C$, respectively (p<0.05). Temperatures after a 2-hour cold air application on the skin and in the muscle in dept도 of 2, 4, and 6cm were $32.2{\pm}1.1, 36.2{\pm}0.5, 36.6{\pm}0.3, 36.9{\pm}0.3^{circ}C$respectively (p<0.05). Temperatures on the skin and in the muscle significantly decreased after 2 hours, compared with before cold air application (p<0.05). The intra-muscular temperature was changed more slowly than the skin temperature, and the deeper the muscle, the lesser temperature changes. The effect of a 5-minute cold air application lasts up to 2 hours, and it seems that the rebound-rise of the temperature dut to the reactive vasodilatation does not occur in the gluteal muscle.

  • PDF

Analysis of Fire Suppression Efficiency for Intermittent Water Spray Pattern by Fire Dynamics Simulator (FDS를 이용한 교번식 미분무방식의 소화 성능 분석)

  • Jee, Moon-Hak;Lee, Byung-Kon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.216-220
    • /
    • 2008
  • Water mist fire suppression system utilizes the fire suppression features such as cooling of fire source, dilution of ambient oxygen, and shielding of radiation heat with the evaporation of microscopic water droplets. The momentum of water mist is relatively lower than that of larger water droplet and the infiltration of water mist to the fire source is not effective. Contribution of evaporated water vapor is liable to decline to limited portion of fire source due to its light weight and sparse density. On the other hand, the cycling water mist pattern is expected to improve the penetration force of water mist as well as the air expelling capability with the stratified spray characteristics. At this paper, we present the analyzed fire suppression capability of intermittent water spray pattern by use of FDS which is computational fire dynamics fire model. We expect this analysis can support the basic concept to the development of the prototype of water mist nozzle.

Effects of Swirl and Combustion Parameters on the Performance and Emission in a Turbocharged D.1. Diesel Engine (선회유동 및 연소인자가 터보과급 디젤엔진의 성능 및 배기가스특성에 미치는 영향)

  • 윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.90-98
    • /
    • 2002
  • The effects of swirl and combustion parameters on the performance and emission in a turbo-charged D.I. diesel engine of the displacement 9.4L were studied experimentally in this paper. Generally the swirl in the combustion process of diesel engine promotes mixing of the injection fuel and the intake air. It is a major factor to improve the engine performance because the fuel consumption and NO$_{x}$ is trade-off according to the high temperature and high pressure of combustion gas in a turbocharged D.I. diesel engine, it's necessary to thinking over the intake and exhaust system, the design of combustion bowl and so on. In order to choose a turbocharger of appropriate capacity. As a result of steady flow test, when the swirl ratio is increased, the mean flow coefficient is decreased, whereas the gulf factor is increased. Also, through engine test its can be expected to meet performance and emissions by optimizing the main parameter's; the swirl ratio is 2.43, injection timing is BTDC 13$^{\circ}$ CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 and turbine A/R 1.19.

A Study of the Pollutant Formation and Spectral Radiation Properties in Ceramic Fiber Radiant Burner (세라믹 화이버 버너의 배기 배출물과 분광학적 특성에 관한 연구)

  • Jeong, Yong-Ki;Kim, Young-Soo;Lee, Dae-Rae;Yang, Dae-Bong;Ryu, Jung-Wan;Yun, Alexander;Ha, Man-Young;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.790-798
    • /
    • 2007
  • An experimental study was performed to investigate the effects of mixing quality, inlet pressure, nozzle diameter on CO, NO emission and radiation characteristics in porous ceramic fiber radiant burners. Observations of combustion characteristics occurring inside the burner system which was insulated fiber mat, were investigated by measuring emission and radiation characteristics. Combustion was achieved at the firing rate of $88{\sim}99\;kcal/hr$, inlet pressure of $100{\sim}250mmH_2O$. The fiber burner exhibit significant both spectral intensity peaks in the bands at $2.5{\mu}m\;and\;4.0{\mu}m$ relatively. There is a small difference in the variable mixing tube. However spectral intensity increased with the firing rate. CO emissions were found to be strongly dependent on the operating conditions. There was a tendency that CO concentration increased as the firing rate increases. the reason for rise of CO concentration is that is becomes it the relatively rich condition. Relatively low NO emission was observed for the whole operating range. The NO concentration is maximal at the firing rate of approximately 2850 kcal/hr and an air ratio of about 1.