• 제목/요약/키워드: Air Journal Bearing

검색결과 374건 처리시간 0.021초

Modified Boundary-Fitted Coordinate System Method for HDD Slider Analysis

  • 황평
    • KSTLE International Journal
    • /
    • 제5권2호
    • /
    • pp.52-56
    • /
    • 2004
  • The hard disk drive performance depends strongly on air bearing characterisitcs of the head slider. The objective of the slider design is to provide accurate positioning of the magnetic read/write element at the very small height above the disk. Application of the numerical methods is required due to complexity of the air bearing surface of the slider. The Boundary-Fitted Coordinate System Divergence Formulation method can be used for calculation of pressure distribution in the case of steep film thickness gradients. In the present work, the interpolating functions used in the expression for the Couette flow are modified in order to improve the solution characteristics in the extremely high compressibility number region. The advantages of the modified method are demonstrated on example of the flat skewed slider. Finally, the modi.ed method is applied to analysis of the static characteristics of the femto-slider. The analysis results indicate the effect of the silder's air bearing surface crown on the flying height and the pitching angle in steady state position.

2열 외부가압 공기 저어널 베어링에서 공기 급기구 위치에 따른 동적계수에 관한 실험적 연구 (A Expermental Study on the Dynamic Coefficients according to the Source Positions in Externally Pressurised Air-lubricated Journal Bearing with Two Row Sources)

  • 이종렬;이준석;성승학;이득우
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.231-235
    • /
    • 2001
  • This paper has been presented the dynamic effect by the journal speed. eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from previous investigations in the side of pressure distribution of air film by the wedge effects. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

  • PDF

공기동압베어링의 성능 해석 및 가공특성 평가 (Evaluation of Machining Characteristics and Performance Analysis of Air-Lubricated Dynamic Bearing)

  • 백승엽;김광래
    • 한국산학기술학회논문지
    • /
    • 제12권12호
    • /
    • pp.5412-5419
    • /
    • 2011
  • 산업의 발달에 따른 각종기기 장치들의 고속화, 소형화, 정밀화로 인해 고속 스핀들의 필요성은 점점 커지고 있다. 또한 공기동압베어링은 스테이지 모션에 대해서 무마찰 실현을 위해서 웨이퍼 생산용 광학 리소그래피 분야에도 적용된다. 공기동압베어링은 마찰에 의한 동력손실과 열 발생이 적어 고속회전에 유리하고 고정밀 회전이 가능하기 때문에 고속 고정밀 스핀들 시스템 및 하드 디스크 드라이브에 사용될 수 있다. 본 연구에서는 축 하중 지지를 위해 헤링본 홈 형상을 가지는 공기동압베어링의 성능에 대한 수치해석을 수행하였다. 또한 본 연구에서는 공기동압베어링을 제작하기 위해서 기존의 기계 가공방법과는 다른 비접촉식 초정밀 가공 방법인 마이크로 전기화학가공에 의한 방법으로 마이크로 그루브 가공을 수행하였고, 수치해석 프로그램을 이용하여 전극의 간극, 전해용액 농도, 가공시간 등 이론적인 수치를 시뮬레이션 하였다.

원심펌프 베어링 유닛의 열신뢰성 분석 (Thermal Reliability Analysis of the Bearing Units in a Centrifugal Pump)

  • 문정환;문승재;이재헌
    • 설비공학논문집
    • /
    • 제19권4호
    • /
    • pp.313-320
    • /
    • 2007
  • In this paper, the experimental study has been carried out to investigate the reliability lifetime of two bearing units based on the oil temperature. Measurements for the oil temperature as well as the bearing temperature during normal operation were performed to study the effects of oil viscosity and oil submergence percentages in the two bearing units. The optimal lubrication condition to increase the lifetime of the bearing unit A was found that its viscosity and submergence percentage were VG32 and 25%, respectively. For the bearing unit B, when the oil viscosity and submergence percent were VG32 and 75%, the lubrication condition was the most efficient. Finally, the adjusted rating times of both the bearing units were calculated to be over 28,000 h, which is greater than the minimum adjusted rating times of 25,000 h. Therefore, they satisfied the regulated lifetime of API 610.

펌프 베어링하우징에서 베어링과 오일의 과열 및 오일수명 예측 (Prediction of Oil Lifetime due to Overheating of Oil and Bearing Housing in a Pump)

  • 한상규;강병하;이봉주
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.408-413
    • /
    • 2004
  • An experimental study has been carried out to investigate overheating of oil and bearing housing during pump operation. This problem is of particular interest in the pre diction of lifetime and failure of pump. Transient variation of oil temperature as well as bearing housing temperature is measured to study the effect of oil viscosity, oil amount, and discharge flow rate of pump. It is found that optimal oil quantity as well as proper viscosity of oil is required to keep the safe temperature level of oil and bearing housing in a pump. The oil temperature at steady state is almost not affected by discharge flow rate in the range of discharge flow rates considered in the present study.

쉘 모델을 이용한 공기 포일 스러스트 베어링의 열-유체-구조 연동 해석 (Thermo-Fluid-Structure Coupled Analysis of Air Foil Thrust Bearings using Shell Model)

  • 윤종완;문소연;박상신
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.17-23
    • /
    • 2024
  • This study analyzes the thermal effects on the performance of an air foil thrust bearing (AFTB) using COMSOL Multiphysics to approximate actual bearing behavior under real conditions. An AFTB is a sliding-thrust bearing that uses air as a lubricant to support the axial load. The AFTB consists of top and bump foils and supports the rotating disk through the hydrodynamic pressure generated by the wedge effect from the inclined surface of the top foil and the elastic deformation of the bump foils, similar to a spring. The use of air as a lubricant has some advantages such as low friction loss and less heat generation, enabling air bearings to be widely used in high-speed rotating systems. However, even in AFTB, the effects of energy loss due to viscosity at high speeds, interface frictional heat, and thermal deformation of the foil caused by temperature increase cannot be ignored. Foil deformation derived from the thermal effect influences the minimum decay in film thickness and enhances the film pressure. For these reasons, performance analyses of isothermal AFTBs have shown few discrepancies with real bearing behavior. To account for this phenomenon, a thermal-fluid-structure analysis is conducted to describe the combined mechanics. Results show that the load capacity under the thermal effect is slightly higher than that obtained from isothermal analysis. In addition, the push and pull effects on the top foil and bump foil-free edges can be simulated. The differences between the isothermal and thermal behaviors are discussed.

볼 베어링의 운전조건에 따른 발열 특성 (Heat Generation Characteristics of Ball Bearing for Operating Conditions)

  • 장윤석;나희형;임윤철
    • Tribology and Lubricants
    • /
    • 제13권4호
    • /
    • pp.26-32
    • /
    • 1997
  • The heat generation of the angular contact and the deep groove ball bearing is studied experimentally and numerically. The temperature variation of the inner and outer races and the temperature increase distribution are measured for the shaft rotational speeds, preloads, viscosities of the lubricant and lubrication methods. The measured temperature distributions are used as the input data of the numerical simulation to estimate the heat generation rate at the bearing. The temperatures of the inner and outer race increase more rapidly and approach faster to their steady values as the rotational speed increases. The optimal viscosity of the oil to minimize the heat generation is 8~10 cSt at 4$0^{\circ}C$ when the oil-air lubrication method is adopted. The heat generation of the bearing increases with the rotational speed and depends more on the lubrication method than on the preload variation.

공기 포일 스러스트 베어링의 하중지지능력에 관한 연구 (A study of the Load Capacity of Air Foil Thrust Bearings)

  • 이용복;김태영;박동진
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.292-297
    • /
    • 2009
  • Air foil thrust bearings are the critical components available on high-efficiency turbomachinery which need an ability to endure the large axial force. Air foil bearings are self-acting hydrodynamic bearings that use ambient air as their lubricant. Since the air is squeezed by the edge of compliance-surface of bearing, hydrodynamic force is generated. In this study, we measured the air film thickness and obtained the minimum film thickness experimentally. To increase the maximum load capacity, compliance of sub-structure was controlled. From numerical analyses, it is seen that, if the air film thickness is distributed more uniformly by variable compliance, the thrust bearings can take more axial load.

진공예압형 다공질 공기베어링의 압력분포 및 성능해석 (Analysis on the Static Performance of Vacuum-Preloaded Porous Air Bearings)

  • 김경호;박천홍
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1327-1333
    • /
    • 2013
  • Air bearings are widely used in precision stages because of low friction and high motion accuracy, however, they suffer from low stiffness in comparison with rolling bearings or hydrostatic bearings. So, several preloading methods using weight, magnet and vacuum force, and opposing pads have been used to increase the stiffness of the air bearings. In this paper, pressure distributions of the vacuum preloaded porous air bearings are calculated using the proposed method. And then, the load capacity and stiffness are analyzed. For the vacuum preloaded air bearings, the stiffness is increased owing to reduced bearing clearance by vacuum force. The simulation results indicate that variation of vacuum pressure with clearance in the vacuum pocket gives rise to low stiffness, so the vacuum pocket should be designed for pressure to be constantly maintained regardless of the bearing clearance by means of large effective pumping speed.

500W급 초소형 가스터빈 개발을 위한 압축기 성능 평가 (Performance Evaluation of Compressor to Develop 500W Class Ultra-Micro Gas Turbine)

  • 서정민;박준영;최범석;박무룡
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.51-57
    • /
    • 2012
  • Performance evaluation of a compressor is conducted to develop 500W class ultra-micro gas turbine (UMGT) for power generation. The performance evaluation is essential to check the performance of the components of UMGT, a radial turbine, a centrifugal compressor, an angular combustor and a shaft, which have been already designed in previous researches. The purpose of this study is to introduce the development process of the performance testing equipments of the UMGT and to present the results of compressor performance test. For the performance evaluation of the compressor, two test equipments are developed and the initial test equipment uses commercial static air bearings with long shaft. In the improved test equipment, static air bearing is improved to increase rotating speed and compressed nitrogen gas is used for utility gas of the static air bearing to supply compressed air in a stable and steady way. To increase rotating speed to 320,000 rpm, 80% speed of design speed, compressed air is provided to the turbine. The performance map of the compressor with the 50%, 60%, 70%, 80% speed of design point is presented. The results of the performance test of compressor show a good agreement with the results of 3D CFD.