• 제목/요약/키워드: Air Journal Bearing

검색결과 374건 처리시간 0.022초

A Study on the Influence of Nonlinearity Coefficients in Air-Bearing Spindle Parametric Vibration

  • Chernopyatov, Y.A.;Lee, C.M.;Chung, W.J.;Dolotov, K.S.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권1호
    • /
    • pp.51-58
    • /
    • 2005
  • The development of the high-efficiency machine-tools equipment and new cutting tool materials with high hardness, heat- and wear-resistance has opened the way to application of high-speed cutting process. The basic argument of using of high-speed cutting processes is the reduction of time and the respective increase of machining productivity. In this sense, the spindle units may be regarded as one of the most important units, directly affecting many parameters of high-speed machining efficiency. One of the possible types of spindle units for high-speed cutting is the air-bearing type. In this paper, we propose the mathematical model of the dynamic behavior of the air-bearing spindle. To provide the high-level of speed capacity and spindle rotation accuracy we need the adequate model of "spindle-bearings" system. This model should consider characteristics of the interactions between system components and environment. To find the working characteristics of spindle unit we should derive the equations of spindle axis movement under the affecting factors, and solve these equations together with equations which describe the behavior of lubricant layer in bearing (bearing stiffness equations). In this paper, the three influence coefficients are introduced, which describe the center of spindle mass displacement, angle of shaft rotation around the axes under the unit force application and that under the unit torque application. These coefficients are operated in the system of differential equations, which describes the spindle axis spatial movement. This system is solved by Runge-Kutta method. Obtained trajectories and amplitude-frequency characteristics were then compared to experimental ones. The analysis shows good agreement between theoretical and experimental results, which confirms that the proposed model of air-bearing spindle is correctis correct

Design of Air Turbine and Air Bearing for Dental Handpiece

  • Hwang, Pyung;Park, Sang-Shin;Sohn, Jeong-L.;Kwon, Seong-In;Kim, Do-Hyung;Kim, Woo-Seok
    • Tribology and Lubricants
    • /
    • 제23권5호
    • /
    • pp.240-247
    • /
    • 2007
  • The design process of the dental handpiece is described. The parameters of the high speed air turbine are estimated. The effect of supply hole on the stiffuess and damping of the air bearing for handpiece is studied numerically. The Reynolds equation is solved by using the divergence formulation and the perturbation method. The test rig is built and the test procedure is developed for the turbine rotational speed measurement by using Fourier transform of noise generated by the turbine during steady operation.

공기윤활 빗살무늬 동압 저어널베어링의 부하특성에 관한 연구 (A Study on the Load Characteristics of Air-Lubricated Hydrodynamic Herringbone-Grooved Journal Bearing)

  • 강경필;임윤철
    • Tribology and Lubricants
    • /
    • 제10권1호
    • /
    • pp.27-34
    • /
    • 1994
  • An analysis based on the narrow groove theory is not suitable for the case of insufficient number of grooves or of non-rectangular shaped grooves. In this study, we present the solution of the compressible Reynolds equation for the air-lubricated hydrodynamic herringbonegrooved journal bearing with circular shaped grooves. From the results calculated numerically, optimal design values are obtained for the herringbone-grooved journal bearing.

공작기계용 고속주축계의 공기냉각특성에 관한 연구 (Air Cooling Characteristics of a High Speed Spindle System for Machine Tools)

  • 최대봉;김석일;송지복
    • 한국정밀공학회지
    • /
    • 제11권1호
    • /
    • pp.123-128
    • /
    • 1994
  • A high speed spindle system for machine tools can be used to reduce the machining time, to improve the machining accuracy, to perform the machining of light metals and hard materials, and to unite the cutting and grinding processes. In this study, a high speed spindle system is developed by applying the oil-air lubrication method, angular contact ball bearings, injection nozzles with dual orifices, cooling jacket and so on. And an air cooling experiment for evaluating the performance of the spindle system is carried out. Especially, in ofder to establish the air cooling conditions related to the development of a high speed spindle system, the effects of cooling air pressure, oil supply rate, air supply rate and rotational spindle speed are studied and discussed on the bearing temperature rise and frictional torque. Also the effects of cooling air pressure, rotational spindle speed and spindle system structure is investigated on the bearing temperature distribution. The experiment on the test model reveals the usefulness of the air cooling method.

  • PDF

공기 포일 베어링으로 지지되는 초고속 마이크로 터보차져의 구동 안정성 향상에 관한 연구 (Stability Improvement of the Ultra-High Speed Micro Turbocharger Supported by Air Foil Bearings)

  • 곽용석;김창호;정진택;이용복
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.541-548
    • /
    • 2008
  • To improve the operational stability of the 100 Watts class Micro Gas Turbine, the air foil bearing with additional damping material has been investigated. The key of structure is that a viscoelastic material is coated under the top foil. The compliant foil journal bearing and thrust bearing are designed to withstand high load of vibrations at the operational speed 870,000 rpm. Test is executed in room temperature. Rotor has stably operated above 480,000 rpm. It is over 55% of the designed speed 870,000 rpm. Synchronous and subsynchronous vibrations are both well controlled. Vibration amplitude diminished over 50%. With the help of increased damping resulting from the viscoelasticity, the rotor stability of Micro turbocharger has been improved.

초고속 스핀들의 윤활조건 선정을 위한 기초 연구 (A Foundation Study on the Selection of Bearing Lubrication Conditions in High-speed Spindle)

  • 안성환;이춘만
    • 한국기계가공학회지
    • /
    • 제8권1호
    • /
    • pp.3-9
    • /
    • 2009
  • Recently, a high speed cutting is essential requirement to satisfy latest demand of high precision product and machining of hard materials. However heat generation by high speed rotation causes many problems. The machining error and shortening spindle lifetime by thermal stress is typical example. Generation of heat is mostly caused by sliding at the rotor and bearing. For minimization of heat generation at bearing, decision of the condition of proper lubrication is necessary. The thermal study about 40,000rpm spindle by changing the condition of oil-air lubrication method is carried out in this paper. The results of this paper can be used effectively in the decision of oil-air lubrication condition of other types of spindle for machine tools.

  • PDF

저널 공기 베어링에 의해 지지되어진 강체 로터 계의 동특성 해석 (Dynamic Characteristics Analysis of a Rigid Rotor System Supported by Journal Air Bearings)

  • 권대규;곡순이;이성철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1026-1031
    • /
    • 2001
  • In this paper. the dynamic characteristics of a super high-speed tilting-pad air bearing(TPGB) used in a turbo expander with high expansion ratio are analyzed. The dynamic behavior and stability of a rotary system supported by two journal air bearings are investigated numerically. The transient response of the shaft is obtained by simultaneously solving the equation of motion of the shaft and the dynamic Reynolds equation. The stiffness and damping coefficients of the bearing are calculated from the loading coefficients of the bearing are calculated from the loading capacity. shaft velocity and displacement by using a curve fitting method. The natural frequencies of the 1st and 2nd rigid modes can be calculated from these coefficients. The theoretical method of a rigid rotor system is verified by experimentsut.

  • PDF

전류신호 분석을 통한 저널베어링 이상상태 진단 (Diagnosis of a Journal Bearing Fault via Current Signature Analysis)

  • 박진석;허형;정경훈;이규만;박근배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.119-122
    • /
    • 2005
  • A study on motor current signature analysis has been executed for monitoring the fault of journal bearing due to wear. The air gap eccentricity of motor produces specific frequencies in motor current, the supplied current frequency plus and minus rotational rotor frequency. The air gap eccentricity is simulated by the clearance of Journal bearing. The amplitudes of the specific frequencies increase with the increasing clearances. The amplitudes of the specific frequencies continue to increase over the wear limit that is used in the manufacturer of the test motor. Though clear relations between the amplitudes of the specific frequencies and the clearances are not obtained in this paper, the specific frequencies can be used as an indicator of a journal bearing fault. Further study is necessary to make out the quantitative relations between the specific frequencies and the clearances.

  • PDF

공기 스테이지의 형상 오차가 운동정밀도에 미치는 영향 (Effect of Shape Error of an Air Stage on Motion Precision)

  • 류대원;이재혁;박상신;김규하
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.68-74
    • /
    • 2020
  • In this study, the effect of the shape error of a guideway on the movement of a stage that uses an air bearing is analyzed. The shape error of moving parts supported by the air bearing is known not to affect the vibrations of moving parts as much as the magnitude of the shape error. This is called the "averaging effect." In this study, the effect of shape error on a guideway, as well as the averaging effect of an air-bearing system, is analyzed theoretically using a dynamic-analysis program. The dynamic-analysis program applies a commercially available code in COMSOL and solves the Reynolds equation between the stage and the guideway, along with the equation of motion of the stage. The stage is modeled as a two-degree-of-freedom system. The shape error is applied to the film thickness function in the form of a sine wave. The stage movement is analyzed using the fast Fourier transform process. The eccentricity and tilting are found to be proportional to the amplitude of the shape error of the guideway. Stage vibrations are less than 10% of the amplitude of the shape error on the guideway. This means that the averaging effect of the air bearing is verified quantitatively. Moreover, if the air supply position matches the shape error in the guideway, there is a notable change in eccentricity and tilting.