• 제목/요약/키워드: Air Injection

검색결과 1,199건 처리시간 0.031초

전자제어식 연료분사장치의 구조와 작동 (Structure & operation of electronic fuel injection)

  • 목희수
    • 오토저널
    • /
    • 제8권4호
    • /
    • pp.13-23
    • /
    • 1986
  • The power of an international combustion engine depends on its ability to inhale air whether it is naturally aspirated or turbocharged. The use of fuel injection allows engine efficiency to be increased through a more even distribution of the air/fuel ratio throughout the engine's operation range. The theoretical value for complete combustion in an engine is commonly refered to as stoichiometric, which means that we require 14.7 parts of air to 1 part of gasoline. This stoichiometric ratio can be more closely maintained with electronically controlled fuel injection than it can with carburetion. Because of the greater efficiency of the engine using fuel injection, a horse power increase of at least 10% is produced over its carburetor version. In addition, better fuel economy and less exhaust emissions are also obtained.

  • PDF

Effects of Turbine Inlet Temperature on Performance of Regenerative Gas Turbine System with Afterfogging

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권4호
    • /
    • pp.141-148
    • /
    • 2009
  • Afterfogging of the regenerative gas turbine system has an advantage over inlet fogging in that the high outlet temperature of air compressor makes the injection of more water and the recuperation of more exhaust heat possible. This study investigates the effects of turbine inlet temperature (TIT) on the performance of regenerative gas turbine system with afterfogging through a thermodynamic analysis model. For the standard ambient conditions and the water injection ratios up to 5%, the variation of system performance including the thermal efficiency is numerically analyzed with respect to the variations of TIT and pressure ratio. It is also analyzed how the maximum thermal efficiency, net specific work, and pressure ratio itself change with TIT at the peak points of thermal efficiency curve. All of these are found to increase almost linearly with the increases of both TIT and water injection ratio.

CAI 연소 방법을 이용한 성층 연소를 통한 운전 영역 확대, 연소 및 배기 특성에 관한 실험적 연구 (An Experimental Study on the Extend of the Operating Region and Emission Characteristics Through Ohe Stratined Combustion Using Controlled Auto-Ignition Method)

  • 정해영;이기형;이창희
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.465-471
    • /
    • 2006
  • Controlled auto-ignition(CAI) combustion, offers the potential to improve fuel economy and reduce emission simultaneously. In this study, CAI-combustion was achieved in a single cylinder gasoline DI engine with modified camshafts in order to restrict the gas exchange process. We investigated the effects of air-fuel ratio, residual EGR rate and injection timing such as early injection and late injection on the attainable CAI combustion region. The effect of injection timings on combustion characteristic such as start of combustion, combustion duration and heat release rate was also investigated. From the result early injection causes the mixture to ignite earlier and burn more quickly due to the exothermic reaction during the recompression and gives rise to good mixing of the fuel/air. On the other hand, late injection extended the operation region more than early injection but the emissions of HC and NOx were more or less increased than early injection.

충격기류식 여과집진장치의 펄스간격 밀 분사거리에 따른 압력손실변화에 관한 기초 연구 (A Study on the Pressure drop Variance of Pulse interval, injection distance in Pulse Air Jet Type Bag Filter)

  • 서정민;최금찬;박정호
    • 한국환경과학회지
    • /
    • 제13권3호
    • /
    • pp.223-232
    • /
    • 2004
  • The change of pressure drop according to the change in the inlet concentration, pulse interval, and injection distance of pulse air jet type bag filters, and the effect of venturi installation are as follows. The pressure drop with the range of 30 to $50mmH_2O$ varies according to the injection distance with 30, 50, 70, 90sec and the inlet concentration of venture built-in fabric filters. For the lower concentration of 0.5g/㎥ and 1g/㎥, the pressure $drop(\DeltaP)$ was stable 60 to 90minutes after operation. For the higher concentration of 3g/㎥, as $\DeltaP$ continues to go up, pulse interval should be set shorter than 30 seconds. The pressure drop with the injection distance of 1l0mm, when inlet dust concentration is 0.5g/㎥ or 1g/㎥, is 1.3 to 2 lower than with the injection distance of 50, 160, and 220mm, which means that the inflow amount of the secondary air by the instant acceleration is large. The injection distance of 2g/㎥ and 3g/㎥ has the similar pressure distribution. The higher inlet concentration is, the more important pulse interval is than injection distance. The pressure drop has proved to be larger when inlet concentration is lower and injection distance closer, on condition that the venturi is installed. The change in the pressure drop was smallest when injection distance was 50mm, followed by 220mm, 160mm, and 110mm.

자동차 리어램프 반사판의 사출공정에 따른 변형 패턴 분석 (Analyses on Deformation Patterns Depending on the Injection Process for Rear Lamp Reflectors of Automotive)

  • 최현진;박철우;최성대
    • 한국기계가공학회지
    • /
    • 제9권4호
    • /
    • pp.32-37
    • /
    • 2010
  • One of the most common engineering processes using plastics is the injection molding. In addition, plastics are utilized over the entire areas in our life including cars and home appliances among others for their characteristics with no deterioration even after a long time, as well as for their light weights in addition to their good durability. This paper aimed to minimize defects through prior analyses on the weld line, air traps, filling time, molding temperature and deformation patterns among others while carrying out interpretations on the cooling, filling and deformation in the injection process using the moldflow for rear lamp reflectors among components for a car in making parts through the coating process after injection.

열펌프 압축기의 내부 액분사 효과에 대한 수치해석적 연구 (A Numerical Study of Liquid Injection into the Compressor Cylinder of a Heat Pump)

  • 허재경;방광현
    • 설비공학논문집
    • /
    • 제15권5호
    • /
    • pp.397-405
    • /
    • 2003
  • Heat and fluid flow in a compressor into which liquid refrigerant is injected for the purpose of reducing discharge gas temperature in a heat pump system has been numerically studied. A mechanistic approach encompassing liquid jet breakup and droplet evaporation has been performed to investigate the effects of liquid injection on the spacial and temporal variation of the gas temperature and pressure inside the compressor cylinder. Various parameters, such as liquid injection mass, time, duration and droplet size, are considered in the present study to elucidate the flow field inside the compressor. As the injection mass is increased, discharge gas temperature is decreased, while the pressure is increased due to the added mass of the injection. For the injected liquid mass corresponding to 15% of the total vapor mass in the cylinder, the discharge gas temperature drops by 22.4 K. It is observed that the droplet size plays a major role in the evaporation rate of the droplets that determines the degree of the discharge temperature drop.

액상분사식 LPG 인젝터의 아이싱 생성 특성 및 억제 방법 (Icing Characteristics in Liquid-Phase Injection of LPG Fuel)

  • 이선엽;김창업;최교남;강건용
    • 한국분무공학회지
    • /
    • 제14권4호
    • /
    • pp.147-152
    • /
    • 2009
  • Since a liquid-phase LPG injection system allows accurate control of fuel injection and increase in volumetric efficiency, it has advantages in achieving higher engine power and lower emissions compared to the mixer type LPG supplying system. However, this system also leads to an unexpected event called icing phenomenon which occurs when moisture in the air near the injector freezes and becomes frost around the nozzle hole due to extraction of heat from surrounding caused by instant fuel vaporization. As a result, it becomes difficult to control air/fuel ratio in engine operation, inducing exacerbation of engine performance and HC emission. One effort to mitigate icing phenomenon is to attach anti-icing injection tip in the end of nozzle. Therefore, in this study, the effect of engine operation parameters as well as surrounding conditions on icing phenomenon was investigated in a bench test rig with commercially-used anti-icing injection tips. The test results show that considerable ice was deposited on the surface near the nozzle hole of the anti-icing tip in low rpm and low load operating conditions in ambient air condition. This is because acceleration of detachment of deposited ice from the tip surface was induced in high load, high rpm conditions, resulting in decrease in frost accumulation. The results of the bench testing also demonstrate that little or no ice was formed at surrounding temperature below a freezing point since the absolute amount of moisture contained in the intake air is too small in such a low temperature.

  • PDF

배치형 내부 사이클론식 순환유동층 연소로내 2차 공기 주입에 의한 슬러지 소각 유해 배가스 저감효과 (Effect of Secondary Air Injection on Emission from Sludge Incineration in a Batch-type Internally Cycloned Circulating Fluidized Bed Combustor)

  • 장석돈;신동훈;황정호
    • 한국연소학회지
    • /
    • 제7권3호
    • /
    • pp.16-22
    • /
    • 2002
  • Combustion performance of an internally cycloned circulating fluidized bed for paper sludge was discussed through a series of batch type experiments. Operation parameters such as water content, feeding mass of sludge and secondary air injection rate were varied to find out the effect on the combustion performance, which was examined with carbon conversion rate and pollutant emission such as CO and NOx. A conventional solid fuel reaction was observed in the experiments of varying water content and feeding mass of the sludge, which is characterized with kinetic limited reaction zone, diffusion limited reaction zone and transition zone. Secondary air injection with swirl enhances the mixing of the gas phase as well as the solid phase, and improves combustion efficiency accompanied with higher carbon conversion rate and lower pollutant emission rate.

  • PDF

2차 공기 공급 시스템을 채택한 촉매 변환기 내 냉 시동 구간 배기가스 해석 (Emission Analysis in Catalytic Converter Adopted Secondary Air Injection System for Cold Start Period)

  • 윤정의
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.46-52
    • /
    • 2010
  • In this paper, emission analysis during cold start period of CVS-75 mode in LPG vehicle was performed to find out proper operating conditions of SAI(Secondary Air Injection) system. In order to meet SULEV target, the simulated emission system had a SAI system as well as a MCC(Manifold Catalytic Converter) and a UCC(Under body Catalytic Converter). Using commercial 1-D code AMESIM, in which 7 step global surface chemical reactions of Langmuir-Hinshelwood type were adopted, transient emission analysis in the exhaust system during cold start period of CVS-75 mode were carried out to figure out the effects of flow rate, duration of supply air on HC, CO, NO emission.