• Title/Summary/Keyword: Air Fuel

Search Result 2,968, Processing Time 0.026 seconds

Effect of Air Conditioning System on Vehicle Fuel Economy in a Passenger Car (Air Conditioning System이 차량 모드 주행 연비에 미치는 영향 연구)

  • Kim, Dae-Kwang;Cho, Geun-Jin;Park, Jin-Il;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2007
  • Fuel efficiency is one of the major issues in regard to energy and environment. As customers desire more comfortable vehicles, increase of accessory traction force is necessary. Air conditioning system (ACS) consumes the biggest traction force among accessories, especially during summer. This means ACS is the primary object deteriorating fuel economy among accessories. Since direct measurement of traction force and fuel consumption in practical vehicle is difficult, comparison analysis is taken between vehicle with and without ACS working. For this comparison, real time measurements are carried out to know ACS traction force and fuel consumption. As a result of the comparison, a vehicle without ACS operation was 15.92% superior to a vehicle with ACS operating. It could be used as a fundamental material for improvement ACS for better fuel efficiency.

Effect of Operation Condition on the Characteristics of Combustion and Exhaust Emissions in a Gasoline Fueled HCCI Diesel Engine (가솔린 균일 예혼합 압축 착화 디젤기관의 연소 및 배기 특성에 미치는 운전조건의 영향)

  • 이창식;김명윤;황석준;김대식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • The purpose of this work is to investigate the effect of premixing condition on the combustion and exhaust emission characteristics in a HCCI diesel engine. To from homogeneous charge before intake manifold, the premixed gasoline fuel is injected into a premixed tank by fuel injection system and the premixed gasoline fuel is ignited by direct injected diesel fuel. Experimental result shows the NOx and soot emissions are decreased linearly with the increase of premixed ratio. In the case of intake air temperature $20^{\circ}C$ with light load, the specific fuel consumptions are increased with the rise of premixed ratio and HC and CO emissions are also increased. But the intake air heating can improve the specific fuel consumption at light load condition because increased air temperature promotes the combustion of premixed mixture. In the case of high intake air temperature with high load condition, premixed fuel is auto-ignited before diesel combustion and soot emission is increased.

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.

Polymer Electrolyte Fuel Cell Simulation Using Simulink (Simulink를 이용한 고분자 전해질 연료전지 시스템 시뮬레이션)

  • Hwang, Nam-Sun;Lee, Ho-Jun;Ju, Byung-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.109-112
    • /
    • 2007
  • In this paper, a mathematical modeling was developed to simulate 1kW class air cooled Polymer Electrolyte Membrane Fuel Cell(PEMFC) system. The proposed modeling was conducted under SIMULINK based environment. The model ing was developed based on the thermodynamic and chemical equilibrium. The objective is to design and implement the entire fuel cell system model ing including the system controller modeling. The fuel cell process and the control system modeling should have to be connected with each other simultaneously, therefore the two types of modeling influences each other when the system simulator run. The fuel cell modeling libraries are simulated using the SIMULINK under the thermodynamic and chemical equilibrium base. The PID controller application was designed and developed to test the process modeling and verify it. This the prototype development of the fuel cell system to design and test more complicate fuel cell systems, like the residential power generation system. The simulation results was compared to the real PEMFC system performance. We have achieved the reasonable accordance with the Lab test and the simulation results.

  • PDF

An electric conductive-probe technique for measuring the liquid fuel layer in the intake manifold

  • Kajitani, S.;Sawa, N.;Rhee, K.T.;Hayashi, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1184-1189
    • /
    • 1990
  • In order to investigate liquid fuel filming over the intake manifold wall, an electrode-type probe has been developed by lines of authors and this probe was employed in a single cylinder two and four-stroke cycle engine and in a four cylinder four-stroke engine operated by neat methanol fuel. The performance of the probe was dependent upon several parameters including the liquid fuel layer thickness, temperature, additive in the fuel, and electric power source (i.e., AC and voltage level) and was independent of other variables such as direction of liquid flow with respect to the probe arrangement. Several new findings from this study may be in order. The flow velocity of the fuel layer in the intake manifold of engine was about (if the air velocity in the steady state operation, the layer thickness of liquid fuel varied in both the circumferential and longitydinal directions. In the transient operation of the engine, the temporal variation of fuel thickness was determined, which clearly suggests that there was difference between fuel/air ratio in the intake manifold and that in the cylinder. The variation was greatly affected by the engine speed, fuel/air ratio and throttle opening. And the variation was also very significant from cylinder to cylinder and it was particularly strong different engine speeds and throttle opening.

  • PDF

Systematic Analysis for the Effects of Atmospheric Pollutants in Cathode Feed on the Performance of Proton Exchange Membrane Fuel Cells

  • Yoon, Young-Gon;Choi, Insoo;Lee, Chang-Ha;Han, Jonghee;Kim, Hyoung-Juhn;Cho, EunAe;Yoo, Sung Jong;Nam, Suk Woo;Lim, Tae-Hoon;Yoon, Jong Jin;Park, Sehkyu;Jang, Jong Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3475-3481
    • /
    • 2014
  • This paper describes how primary contaminants in ambient air affect the performance of the cathode in fuel cell electric vehicle applications. The effect of four atmospheric pollutants ($SO_2$, $NH_3$, $NO_2$, and CO) on cathode performance was investigated by air impurity injection and recovery test under load. Electrochemical analysis via polarization and electrochemical impedance spectroscopy was performed for various concentrations of contaminants during the impurity test in order to determine the origins of performance decay. The variation in cell voltage derived empirically in this study and data reported in the literature were normalized and juxtaposed to elucidate the relationship between impurity concentration and performance. Mechanisms of cathode degradation by air impurities were discussed in light of the findings.

Fuel Qualities and Combustion Characteristics of Animal-Fats Biodiesel for Agricultural Hot Air Heaters

  • Kim, Youngjung;Park, Seokho;Kim, Youngjin;Kim, Chungkil
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.296-301
    • /
    • 2012
  • Purpose: Combustion and fuel qualities of the animal-fats biodiesel as a heating fuel for agricultural hot air heater were studied. Methods: Biodiesel (BD) was made from animal-fats by reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was tested for fuel and combustion qualities. Results: The kinematic viscosity and the calorific values of the biodiesels were measured. Kerosene based biodiesel, BD20 (K) showed 18 cSt at $-20^{\circ}C$. It seemed that BD100 was not suitable for a heating fuel under some temperature. As BD content increased, the calorific value decreased up to 40,000 J/g for BD100, while the calorific value of light oil was 45,567 J/g showing difference of 5,567 J/g, about 12% difference. Several different fuels including BD20 (biodiesel 20% + light oil 80%), BD50 (biodiesel 50% + light oil 50%), BD100 (biodiesel 100%), and light oil were tested for fuel combustion qualities for agricultural hot air heater, and their combustion performances were compared and analyzed. Flame dimensions of biodiesels and light oils were almost the same shape at the same combustion condition. Generally, the $CO_2$ amounts of BDs were greater than light oil. However, in this study the differences were minor, so there was no significant difference existed between the BDs combustion and light oil. Conclusions: It seemed that quality was good for heating oil for agricultural hot air heater because of showing no barriers for continuous combustion and proper exhaust gas temperature and $CO_2$ amount discharged. But, for fuel fluidity for higher BD content fuel could be a detrimental problem in situations where the outdoor temperature is lowered. As BD content increased, calorific value decreased up to 40,000 J/g for BD100. Calorific value difference between BD20 and light oil was about 1,360 J/g.

A Study on the Atomization and Combustion Characteristics of Air-assisted Injector in MPI Engine (MPI 엔진용 공기 보조 인젝터의 분무 미립화 및 연소 특성에 관한 연구)

  • 서영호;이창석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.52-58
    • /
    • 1998
  • The spray characteristics of air-assisted fuel injection and its effects on the engine combustion was investigated in this study. The atomization characteristics of a Bosch fuel injector inserted into the air-assist adapter were measured using particle motion analysis system. Droplet size decreased with air supplied and fine spray with below $60\mu\textrm{m}$ of SMD was acquired under the conditions of air-assist pressure over 0.5bar. The lean combustion performance of a 1.8L DOHC engine equipped with air-assist adapters was tested on the dynamometer. When the assistant air pressure is 1.0bar, lean limit recorded the highest value, and CO, HC emissions were decreased at the pressure over 1.0bar.

  • PDF

Effects of Premixed Fuel and EGR on the Combustion and Emissions Characteristics of HCCI Diesel Engine (HCCI디젤엔진의 연소 및 배기 특성에 미치는 예혼합 연료와 EGR의 영향)

  • Yoon, Young-Hoon;Kim, Dae-Sik;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1006-1012
    • /
    • 2005
  • The effects of premixed fuels(diesel or n-heptane) and exhaust gas recirculation on combustion and exhaust emission characteristics in a DI diesel engine were experimentally investigated. To improve homogeneity of fuel-air mixture in the conventional diesel engine, the premixed fuel is injected by high pressure(5.5 MPa) into the premixing chamber prior to engine cylinder, And several additional systems such as an EGR system, air heating system and back pressure control system were equipped in the DI diesel engine. The results showed that premixed fuel-air mixture undergoes typical HCCI combustion prior to the combustion of DI diesel fuel. The ignition timing of HCCI combustion is delayed by application of EGR, and it also shows that HCCI combustion can be controlled by an EGR.

An Experimental Study on the NOx Formation of LNG Flame in Fuel Staged Combustor (다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구)

  • Chung, Jin-Do;Han, Ji-Woong;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.389-394
    • /
    • 2004
  • An experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is a act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel bums. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as a primary and secondary fuels. This study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.