• Title/Summary/Keyword: Air Flow Control

Search Result 1,022, Processing Time 0.024 seconds

Air Flow and Heat Storage Performance of Packed Pebble Beds Model (모형 축열층의 공기유동 및 축열 성능)

  • 이석건;이종원;이현우
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.11a
    • /
    • pp.109-113
    • /
    • 1999
  • 겨울철 난방에너지와 여름철 냉방에너지 절감을 위한 자갈축열 태양열 온실의 설계자료를 얻고자 모형 자갈축열층과 이론적 해석을 통하여 축열층의 공기유동성 및 자갈축열층의 축열성능을 분석한 결과를 요약하면 다음과 같다. 1. 압출식으로 공기를 유동시켰을 경우 축열층내 풍속은 0.09-l.50㎧(평균 0.60㎧)범위였으며, 흡인식으로 공기를 유동시켰을 경우 축열층내 풍속은 0.15-0.90㎧(평균 0.46㎧)범위로 평균풍속은 압출식이 높게 나타났으나 축열층 가운데에서는 흠인식이 약 0.06㎧정도 높게 나타났다. 이러한 결과로 볼 때 자갈축열층내 공기순환을 위한 별도의 파이프 매설은 불필요한 것으로 판단된다. 2. 자갈축열층의 공극율이 증가할수록 축열량은 감소하였으며 순환팬 용량과 공극율에 따라 평균 2,133㎉/h-3,243㎉/h 정도 축열량 차이가 있는 것으로 나타났다. 3. 공극율이 0.45인 경우 축열층의 높이가 높을수록 자갈축열층의 온도는 서서히 증가하였으며, 축열층 높이 60cm이하에서는 축열 7시간이후부터는 축열량 변화를 거의 없는 것으로 나타났다. 4. 이러한 결과를 모형축열층에 있어 실험적으로 구해지는 축열 자갈층의 온도 및 축열량과의 비교 검증단계를 거쳐 온실규모에 필요한 적정 축열시스템을 산정할 수 있는 시뮬레이션 프로그램의 기초자료로 활용하고자 한다.

  • PDF

A Study on the Moulding Analysis of Automobile Valve Body Mid-plate (자동차 밸브바디 중간플레이트 성형해석에 관한 연구)

  • Jang Hun;Sung Back-Sub;Cha Yong-Hoon;Kim Duck-joong;Lee Youn-sin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.174-179
    • /
    • 2005
  • In the super slow speed die casting process, the casting defects due to melt flow should be controlled in order to obtain sound casting products. The casting defects that are caused by molten metal were cold shut formation, entrapment of air, gas, and inclusion. But the control of casting defects has been based on the experience of the foundry engineers. The calculation of simulation can produce very useful and important results. The calculation data of die casting process condition from the computer simulation by the Z-CAST is made to insure that the liquid metal is injected at the right velocity range and that the filling time is small enough to prevent premature solidification. The parameters of runner shape that affected on the optimized conditions that was calculated with simple equation were investigated. These die casting process control techniques of automobile valve body mid-plate have achieved good agreement with the experimental data of tensile strength, hardness test, and material structure photographies satisfactory results.

  • PDF

Experiments on Tension Characteristics of Perforated-type Floating Breakwaters (유공형 부방파제의 장력특성에 관한 실험)

  • Yoon, Jae Seon;Ha, Taemin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.514-514
    • /
    • 2017
  • Floating breakwaters were treated as solid bodies without any perforation in previous studies. In this study, however, a floating breakwater is perforated to allow the partial absorption of the energy produced by incident waves and an air chamber is placed in the upper part to control the breakwater draft. A series of laboratory experiments for a floating breakwater installed with a mooring system are carried out. In general, a mooring system can be classified by the number of mooring points, the shape of the mooring lines, and the degree of line tension. In this study, a four-point mooring is employed since it is relatively easier to analyze the measured results. Furthermore, both the tension-leg and the catenary mooring systems have been adopted to compare the performance of the system. In laboratory experiments, the hydraulic characteristics of a floating breakwater were obtained and analyzed in detail. Also, a hydraulic model test was carried out on variable changes by changing the mooring angle and thickness of perforated wall. A hydraulic model was designed to produce wave energy by generating a vortex with the existing reflection method. Analysis on wave changes was conducted and the flow field around the floating breakwater and draft area, which have elastic behavior, was collected using the PIV system. From the test results the strong vortex was identified in the draft area of the perforated both-sides-type floating breakwater. Also, the wave control performance of the floating breakwater was improved due to the vortex produced as the tension in the mooring line decreased.

  • PDF

Thrust Analysis of Combustor Through Control of Scramjet Propulsion System (스크램제트 추진 시스템의 비행 제어를 통한 연소기의 추력 분석)

  • Ko, Hyosang;Yang, Jaehoon;Yoh, Jai ick;Choi, Hanlim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.29-41
    • /
    • 2021
  • The PID controller with fin angle and thrust as control input was designed based on the aerodynamic data of scramjet system. Flight simulation following a given trajectory which strike the target point after climb and cruise with constant dynamic pressure was conducted. After that, the required thrust for the climb and cruise was calculated and the required fuel flow rate for the hydrogen fuel dual mode scramjet combustor was analyzed. The combustor analysis of this study which conducted on integrated model of independently developed inlet, combustor, nozzles and external aerodynamic models, laying the foundation for the integrated design of the air breathing hypersonic system.

Process Optimization of Red Pepper Drying for the Improvement of Drying Efficiency (건조효율 향상을 위한 고추건조공정의 최적화)

  • Chung, Sun-Kyung;Keum, Dong-Hyuk;Lee, Dong-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.428-439
    • /
    • 1992
  • Drying process in a fixed bed red pepper dryer was modeled and simulated. Drying efficiency describing the effectiveness of energy usage in red pepper drying was defined as a ratio of energy used for moisture evaporation to total energy consumption, and expressed in combination of measurable temperature variables. The efficiency was compared with real evaporative efficiency and tested in the simulated and experimental drying. An overall drying efficiency was derived, and analyzed for various control variables consisting of drying temperature, air recycle ratio and air flow rate. Optimal operation conditions of drying was then searched by Box's complex method by using it as an objective function. Carotenoids retention was simulated and put as a constraint of product quality in the optimization. The optimization results gave that two staged drying operation could improve the ding efficiency compared with single staged drying. As a technique for further energy saving automatic termination of drying appeared feasible by monitoring an exit air temperature from dryer.

  • PDF

Pressure Recovery in a Supersonic Ejector of a High Altitude Turbofan Engine Testing Chamber (터보팬 엔진의 고고도 성능의 초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.53-59
    • /
    • 2010
  • This research aims in finding a more optimal ejector size for evacuating engine exhaust gasses and 20% of the cell cooling air. The remaining 80% of cell cooling air pumped into the test chamber is separately exhausted from the test chamber via a discharge port fitted with flow control valves and vacuum pump. Unlike its predecessor this configuration utilizes a smaller capture area to improve pressure recovery. The modified ejector size has a diameter of 1100mm enough to evacuate 66kg/s jet engine exhaust in addition to about 20%, 24kg/s of the cell cooling air tapped from the sterling chamber. This configurations has an area ratio of the engine exit and ejector inlet of about 1.2. Simulation results of the proposed ejector configuration, indicates improved pressure recovery.

Spray Characteristics of Water-Gel Propellant by Impinging Injector (Water-Gel 모사 추진제의 충돌 분무 특성 연구)

  • Hwang, Tae-Jin;Lee, In-Chul;Kim, Sang-Sun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.11-14
    • /
    • 2009
  • The implementation of gelled propellants systems offers high performance, thrust-control, energy management of propulsion, storability, and high density impulse of solid propulsion. Present study focused on the spray behavior of liquid sheets formed by impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are then compared with experiments conducted on spray images formed by impinging jets concerning with air-blast effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure, closed rim pattern shape appeared. As increasing air mass flow rate(decreasing GLR), spray breakup and atomization phenomenon better improved and spray structure instabilities for the effect of air-blast are also increased.

  • PDF

Control of Chlorinated Volatile Pollutants at Indoor Air Levels Using Polymer-based Photocatalyst, Composite

  • Kim, Byeong-Chan;Kim, Hye-Jin;Kim, Ji-Eun;Park, Eun-Ju;Noh, Ji-Sun;Kang, Hyun-Jung;Shin, Seung-Ho;Jo, Wan-Kuen
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • In this study, polyaniline (PANI)-based $TiO_2$ (PANI-$TiO_2$) composites calcined at different temperatures were prepared and their applications for control of trichloroethylene (TCE) and tetrachloroethylene (TTCE) at indoor air levels were investigated. For these target compounds, the photocatalytic control efficiencies of PANI-$TiO_2$ composites did not exhibit any trend with varying calcination temperatures (CTs). Rather, the average control efficiencies of PANI-$TiO_2$ composites over 3-h photocatalytic process increased from 61 to 72% and from 21 to 39% for TCE and TTCE, respectively, as the CT increased from 350 to $450^{\circ}C$. However, for both the target compounds, the average control efficiencies of PANI-$TiO_2$ composites decreased gradually as the CT increased further to 550 and $650^{\circ}C$. These results were ascribed to contents of anatase crystal phase and specific surface area of different particle sizes in the PANI-$TiO_2$ composites, which were demonstrated by the X-ray diffraction and scanning electron microscopy images, respectively. At the lowest input concentration (IC, 0.1 ppm), average control efficiencies of TCE and TTCE were 72 and 39%, respectively, whereas at the highest IC (1.0 ppm) they were 52 and 18%, respectively. As stream flow rate increased from 0.1 to 1.0 L $min^{-1}$, the average control efficiencies of TCE and TTCE decreased from ca. 100 to 47% and ca. 100 to 18%, respectively. In addition, the average control efficiencies of TCE and TTCE decreased from ca. 100 to 23% and ca. 100 to 8%, respectively as the relative humidity increased from 20 to 95%. Overall, these findings indicated that as-prepared PANI-$TiO_2$ composites could be used efficiently for control of chlorinated compounds at indoor air levels;if operational conditions were optimized.

Turbulent Dispersion Behavior of a Jet issued into Thermally Stratified Cross Flows (II) (열적으로 성충화된 횡단류에 분류된 제트의 난류확산 거동 (II))

  • Kim, Sang Ki;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1434-1443
    • /
    • 1999
  • The turbulent fluctuations of temperature and two components of velocity have been measured with hot- and cold-wires in the Thermally Stratified Wind Tunnel(TSWT). Using the fin-tube heat exchanger type heaters and the neural network control algorithm, both stable ($dT/dz=109.4^{\circ}C$) and unstable ($dT/dz=-49.1^{\circ}C$) stratifications were realized. An ambient air jet was issued normally into the cross flow($U_{\infty}=1.0 m/s$) from a round nozzle(d = 6 mm) flushed at the bottom waII of the wind tunnel with the velocity ratio of $5.8(U_{jet}/U_{\infty})$. The characteristics of turbulent dispersion in the cross flow jet are found to change drastically depending on the thermal stratification. Especially, in the unstable condition, the vertical velocity fluctuation increases very rapidly at downstream of jet. The fluctuation velocity spectra and velocity-temperature cospectra along the jet centerline were obtained and compared. In the case of stable stratification, the heat flux cospectra changes Its sign from a certain point at the far field because of the restratification phenomenon. It is inferred that the main reason in the difference between the vertical heat fluxes is caused by the different length scales of the large eddy motions. The turbulent kinetic energy and scalar dissipation rates were estimated using partially non-isotropic and isotropic turbulent approximation. In the unstable case, the turbulent energy dissipation decreases more rapidly with the downstream distance than in the stable case.

Evaluation for Fundamental Properties of Concrete mixed with Pyroclastic Flow Deposit (화쇄류 퇴적물을 혼입한 콘크리트의 기초특성 평가)

  • Choi, Hyeong-Gil;Kim, Gyu-Yong;Noguchi, Takafumi
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.49-57
    • /
    • 2016
  • The aim of this study was to investigate the fundamental properties of pyroclastic flow deposit (PFD), and evaluate the fresh and strength properties of concrete mixed with PFD by indoor tests. The fresh properties, strength properties, shrinkage properties, and durability of the concrete mixed with PFD were also evaluated by outdoor plant tests. the harmful alkali-silica reaction did not occur by mixing concrete with PFD. ages. Moreover, no difficulty was found to be associated with concrete manufacture in the plant because no change in air contents and noticeable slump loss occurred by mixing concrete with PFD. The strength properties, shrinkage properties, and durability of the concrete mixed with PFD were also compared with those of normal concrete. With a suitable temperature control and curing method of concrete, the concrete mixed with PFD is considered to be useful in the construction material field.