• Title/Summary/Keyword: Air Ejector

Search Result 107, Processing Time 0.022 seconds

An Experimental Study on the Performance of a Liquid-Vapor Ejector with Water (액체-증기 이젝터의 성능에 관한 실험적 연구)

  • 박대웅;정시영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.345-353
    • /
    • 2000
  • In this study, the performance of five ejectors has been investigated with working fluids of water and water vapor. The diameters of nozzle and mixing tube of five ejectors were 1 and 1.5(ejector A), 1 and 2(ejector B), 1 and 2.5(ejector C), 1 and 3(ejector D), 2 and 4(ejector E) in millimeters. The length of the mixing tube was 8-10 times of its diameter. For each ejector, the ratio of mass flow rate of ejected water to that of entrained water vapor, $\mu$, was evaluated in terms of evaporator pressure, mass flow rate of ejected water, and water temperature. It was found that the performance of an ejector was not stable when the ratio of diameters was too small or too large(ejector A and D) and $\mu$ was almost the same for two ejectors with the same diameter ratio(ejector B and E). It was also found that $\mu$ increased almost linearly with an increase of evaporator pressure and the ratio $\mu$ increased as water temperature decreased. As expected, $\mu$ converged to zero as the water temperature approached the evaporator temperature. Finally, a non-dimensional correlation has been developed to predict$\mu$ terms of evaporator pressure and saturation pressure of ejected water.

  • PDF

Performance comparison of refrigeration cycle using R134a with the vapor-liquid ejector (증기-액 이젝터를 적용한 R134a 냉동사이클의 성능 비교)

  • Yoon, Jung-In;Kim, Chung-Lae;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.890-894
    • /
    • 2015
  • Recently, research on high-efficiency refrigeration cycles that apply an ejector to basic cycles has progressed actively. The role of the ejector and the performance of refrigeration cycles are subordinate to ejector locations. In this study, the performance of three refrigeration cycles with different ejector locations is compared and analyzed. The results showed an increased COP in all cycles due to the application of the ejector, with the highest increase of 44% compared to a basic refrigeration cycle. The ejector refrigeration cycle proposed in this study presents the highest COP, 3.47. Moreover, the decrease in condensation capacity in Bergander's cycle, Xing's cycle, and our proposed ejector refrigeration cycle went up to 21%. In refrigeration cycles applying the ejector, the pressure ratio of the ejector, the vapor fraction of discharge, and compression ratio are important factors for COP enhancement. For this reason, detailed and accurate control of these is significant.

The Stream and Exhaust Gas Characteristics for Variation of Exhaust Gas Temperature of Marine Incinerator Ejector (선박용 소각로 이젝터의 배출온도 변화에 따른 유동과 배기특성)

  • 김태한
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.60-64
    • /
    • 2000
  • An experimental study was performed to investigate the optimal ejector and operating condition of vessel incinerator. Exhaust gas temperature and secondary air which makes vacuum pressure at ejector throat regions were considered as an important factor. According to the measurement of pressure temperature and nitrogen oxides between non combustion and combustion we found the stream and exhaust gas characteristics of incinerator. This results can give us the exhaust gas temperature control system air pollutant reduction method and the optimum ejector design.

  • PDF

An Experimental Study of Sonic/Supersonic Ejector Flows (음속/초음속 이젝터 유동에 관한 실험적 연구)

  • Kim, Hui-Dong;Choe, Bo-Gyu;Gwon, O-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.640-647
    • /
    • 2002
  • An experimental investigation or the sonic and supersonic air ejector systems has beer conducted to develop design and prediction programs for practical ejector system. Five different primary nozzles have been employed to operate the ejector systems in the ranges of low and moderate operating pressure ratios. The ejector operating pressure ratio for the secondary chamber pressure to be minimized has a strong influence of the ejector throat ratio. The pressure inside the ejector diffuser is not dependent on the primary nozzle configurations employed but only a function of the ejector operating pressure ratio. Experimental results show that a supersonic ejector system is more desirable for obtaining high vacuum pressure of the secondary chamber than a sonic ejector system.

Comparison of Performance in CO2 Cooling System with an Ejector for Various Operating Conditions (다양한 운전조건에서 이젝터를 적용한 CO2 냉동기의 성능비교)

  • Kang, Byun;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.505-512
    • /
    • 2011
  • Recently, many researchers have analyzed the performance of the transcritical $CO_2$ refrigeration cycle in order to identify opportunities to improve the system energy efficiency. The reduction of the expansion process losses is one of the key issues to improve the efficiency of the transcritical $CO_2$ refrigeration cycle. In this study, the analytical study on the performance characteristics of $CO_2$ cycle with an ejector carried out with a variation of outdoor temperature, gascooler inlet air velocity, evaporator inlet air velocity, and evaporator inlet air temperature. As a result, the system performance could be improved over 85% by using an ejector for various operating condition because of the reduction of compressor work. Moreover, the cooling capacity increased about 18% for variable outdoor condition. Therefore, the high performance of an ejector system could be maintained for wide operating conditions and system reliability could be improved compared to that of a basic system.

A Numerical Study on the Performance of a Vapor Compression Cycle Equipped with an Ejector Using Refrigerants R1234yf and R134a (R1234yf와 R134a 냉매의 이젝터를 적용한 냉동사이클 성능에 대한 해석적 연구)

  • Cho, Honghyun;Park, Chasik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.362-368
    • /
    • 2015
  • This paper presents a numerical study on the performance of a vapor compression cycle equipped with an ejector as an expansion device to improve the COP by reducing the expansion loss and compressor work. The simulation is carried out using a model based on the conservation of mass, energy and momentum in the ejector. From the results of the simulation, the vapor compression cycle equipped with an ejector showed a maximum COP improvement of 14.0% when using R134a refrigerant and 16.8% when using R1234yf. In addition, the performance of the system with an ejector represents the increased performance as the temperature difference between condensing and evaporating increased.

Performance Analysis of 1MW Organic Rankine Cycle with Liquid-Vapor Ejector using Effluent from Power Plant (화력발전소 폐열에 따른 작동유체별 액-증기 이젝터를 적용한 1MW급 ORC의 성능 분석)

  • Kim, Hyeon-Uk;Yoon, Jung-In;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.120-125
    • /
    • 2014
  • In this paper, suitable working fluid of 1MW Organic Rankine Cycle(ORC) with liquid-vapor ejector using effluent from power plant is selected. The results of comparison performance of 5 refrigerants are as follows; R600a, R134a, R1270, R236fa, R235fa. The operating parameters considered in this study include the condensation capacity evaporation capacity and efficiency. As a result of comparison of basic ORC system and with liquid-vapor ejector, with ORC system presents the higher system efficiency since the ejector makes the turbine outlet pressure lower than condensation pressure through its pressure recovery. Also, this ejector ORC system is advantageous in miniaturizing the size of components owing to decrease of evaporation capacity and condensation capacity.

The design of an ejector type microbubble generator for aeration tanks

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.307-311
    • /
    • 2019
  • The ejector type microbubble generator, which is the method to supply air to water by using cavitation in the nozzle, does not require any air supplier so it is an effective and economical. Also, the distribution of the size of bubbles is diverse. Especially, the size of bubbles is smaller than the bubbles from a conventional air diffuser and bigger than the bubbles from a pressurized dissolution type microbubble generator so it could be applied to the aeration tank for wastewater treatment. However, the performance of the ejector type microbubble generator was affected by hydraulic pressure and MLSS(Mixed Liquor Suspended Solid) concentration so many factors should be considered to apply the generator to aeration tank. Therefore, this study was performed to verify effects of hydraulic pressure and MLSS concentration on oxygen transfer of the ejector type microbubble generator. In the tests, the quantity of sucked air in the nozzle, dissolved oxygen(DO) concentration, oxygen uptake rate(OUR), oxygen transfer coefficient were measured and calculated by using experimental results. In case of the MLSS, the experiments were performed in the condition of MLSS concentration of 0, 2,000, 4,000, 8,000 mg/L. The hydraulic pressure was considered up to $2.0mH_2O$. In the results of experiments, oxygen transfer coefficient was decreased with the increase of MLSS concentration and hydraulic pressure due to the increased viscosity and density of wastewater and decreased air flow rate. Also, by using statistical analysis, when the ejector type microbubble generator was used to supply air to wasterwater, the model equation of DO concentration was suggested to predict DO concentration in wastewater.

CFD Analysis on the Flow Characteristics of Ejector According to the Position Changes of Driving Nozzle for F.W.G (수치해석을 이용한 담수장치용 이젝터의 노즐위치 변화에 따른 이젝터 유동특성 연구)

  • Joo, Hong-Jin;Jung, Il-Young;Yun, Sang-Kook;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.23-28
    • /
    • 2011
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube (throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. The multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Condition of the simulation was varied in entrance mass flow rate (1kg/s, 1.5kg/s, 2kg/s, 2.5kg/s, 3kg/s), and position of driving nozzle was located from the central axis of the suction at -10mm, 0mm, 10mm, 20mm, 30mm.. Asaresult, suction flow velocity has the highest value in central axis of the suction.

Visualization of Gas/liquid Ejector Flow and Void Fraction Measurement using Fiber Optic Probe (기체-액체 이젝터 유동의 가시화와 광섬유 탐침에 의한 기포분율 측정)

  • Choi, Sung Hwan;Ji, Ho Seong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • Gas/liquid two-phase ejector is a device without moving parts, in which liquid is used to drive gas of a low-pressure source. In this paper, the hydrodynamic characteristics of a vertical down type two-phase ejector were studied using an air-water loop system. Entrained air flow rates were measured with inlet and outlet pressures of the ejector with varying water flow rate. Homogeneous bubbly flows in the discharge pipe were confirmed by the high speed flow visualization method. Quantitative measurements of void fraction were made using a newly developed fiber optic probe system.