• Title/Summary/Keyword: Air Distribution System

Search Result 967, Processing Time 0.025 seconds

Performance Evaluation of Multidrop Chamber Ventilation System in Apartment (공동주택내 다분기챔버형 환기시스템 적용을 통한 풍량분배 개선효과에 관한 연구)

  • Kim, Sung-Soo;Son, Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.545-552
    • /
    • 2009
  • It is common to design the duct branches where to supply the required air flow for individual room in residential apartment house. And TAB process is applied to control the designed air volume with adjusting volume dampers and/or supply diffusers after fully installing the ventilation system. This process has been resulted increasing the initial cost for the residential ventilation system because of man-hour and accessories such as volume control damper or diffuser. However it is difficult to adjust the air volume adequately in small air duct branches in residential ventilation system. The purpose of this study is to figure out the performance of Multidrop chamber coupling system for the residential ventilation system.

A Study on Optimal Control of Slab Cooling Storage Considering Stochastic Properties of Internal Heat Generation (내부발열의 확률적 성상을 고려한 슬래브축냉의 최적제어)

  • Jung, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.313-320
    • /
    • 2015
  • In this paper, a method to obtain the probability distribution of room temperature and cooling load is presented, when the internal heat generation is applied to the system as a disturbance in the air conditioning system with slab cooling storage. The probability distribution of room temperature and the cooling load due to the disturbance were examined in one room of an office building. When considering only the electric power consumption as a probability component, it was found that the effect on room temperature and cooling load is small, because the probability component of the measured electric power consumption in the building is small. On the other hand, when considering the stochastic fluctuations of electric power consumption together with the heat generated by human bodies, the mean value of the cooling load was about 2,300 W and the ratio of the standard deviations was 19% (10 o'clock in second day). It was revealed that the stochastic effects of internal heat generation acting on the air conditioning system with slab cooling storage are not small.

Evaluation of Thermal Performance in a Stadium with Air Circulation System (공기순환 시스템이 설치된 경기장 공간의 열성능 평가)

  • Kim, Kyung-Hwan;Im, Yoon-Chul;Lee, Jae-Heon;Oh, Myung-Do;Park, Myung-Sig;Lee, Dae-Woo;Park, Young-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.170-174
    • /
    • 2001
  • In this paper, CFD technique has been used at design stage to predict space air distribution in a cycle stadium with air circulation system. An air circulation flow of 0.67 rev./min was observed at computed results in the stadium space with and without air circulation system. Comparing the thermal comfort of the two models with or without air circulation system showed that the thermal environment in the former was superior in the latter. Energy savings could be achieved for the model with air circulation due to its lower air inflow temperature.

  • PDF

Numerical Analysis on Flow Characteristics in the Pressurized Air Supply Smoke Control System (급기가압 제연설비의 내부 유동특성에 대한 수치해석)

  • Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.52-58
    • /
    • 2017
  • This study investigated the pressure difference distribution and the flow characteristics among room, ancillary room, and stair case by carrying out the numerical simulations on the air flow inside the pressurized air supply smoke control system. Numerical simulations were conducted to analyze pressure and velocity distribution of compartments by pressurized air supply for the air-leakage test facility which was built to measure the effective leakage area. In this study, the leakage of air was considered by locating the narrow slit onto fire door and window of room. Simulated results using this method precisely followed the previous experimental results for the pressure differences between the stair case and ancillary room. Predicted results showed that the local leakage of air rarely affected the overall flow pattern and pressure distribution. Although the average velocity over the door between room and ancillary room satisfied the regulation for fire safety, it was certified the unsafe outflow to ancillary room could be occurred in the local position such as the upper part of the door.

Effect of a Variation of a Main Duct Area on Flow Distribution of Each Branch (주덕트의 단면적 변화가 분지덕트의 유량분배에 미치는 영향)

  • Lee Jai-Ho;Kim Beom-Jun;Cho Dae-Jin;Yoon Suck-Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.386-395
    • /
    • 2005
  • With the development of a living standard, the importance of indoor air conditioning system in all kinds of buildings and vehicles has increased. A lot of researches on energy losses in a duct and various kinds of flow pattern in branches or junctions have been carried out over many years, because the primary object of a duct system used in HVAC is to provide equal flow rate in the interior of each room by minimizing pressure drop. In this study, to get equal flow distribution in each branch, a blockage is applied to the rectangular duct system. The flow analysis for flow distribution of a rectangular duct with two branches was performed by CFD. By using SIMPLE algorithm and finite volume method, flow analysis is performed in the case of 3-D, incompressible, turbulent flow. Also, the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent fluid flow. The distribution diagrams of static pressure, velocity vector, turbulent energy and kinetic energy in accordance with variation of Reynolds number and blockages location in a rectangular duct show that flow distribution at duct outlets is improved by a blockage. In this rectangular duct system, mean velocity and flow rate distribution in two branch outlets are nearly constant regardless of variation of Reynolds number, and a flow pattern of the internal duct has a same tendency as well.

Improvement of Thermal Enviromental by Two Air Out in Hot Air Heating (이중 취출구에 의한 온풍난방시의 열환경 개선)

  • Jang, In-Seong;Kim, J.S
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.209-217
    • /
    • 1997
  • The objective of this paper is to improve a discomfort caused by the unequal airflow and vertical temperature difference by buoyancy of the supplied hot air in the conventional hot air heating system. In order to the model experiment we manufactured the hot air heater with two air outlet and a model room. We observed the temperature, velocity and airflow distribution and calculated values of PMV and PPD using mean value of central verticality section's air temperature and velocity. We could improve distribution of vertical temperature and velocity at the central section of the model room owing to correlation of hot air of two air outlet.

  • PDF

Experimental study on flow distribution in manifolds by a tapered header (경사 분배관에 의한 다지관내의 유속분포에 대한 실험적 연구)

  • 윤영환;이상헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • A header is the device that makes uniform flow distribution in all branches from header of heat exchangers, pipe burner or chemical equipments. In this study, experimental tests have been performed in order to investigate the flow distribution characteristics in a straight header and tapered header which have 6 and 11 glass pipe branches. The experimental equipment consists of a water circulation system where the fluid velocity in each glass pipe is measured by Ar-ion LDV system. From the experiments and the theoretical equation, it could be recommended that tapered header should be determined so that its internal velocities inside the header become uniform according to taper of the header and number of attached branches for uniform flow distribution in energy systems.

  • PDF

A Flow Quantity Distribution Characteristics of the Hot Water Header for Individual Room Control System (실별제어 온수분배기의 유량분배 특성)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.175-180
    • /
    • 2008
  • Flow quantity to supply to a coil in floor heating system is important to achieve comfortable indoor air condition in the winter season. The hot water header is used to distribute the water into the coil. Experimental study has been performed using the water header that have 5 branches consisted of flow control valves and automatic shut-off valves. Each branch line connected it with X-L pipe. Experimental tests accomplished it to investigate the flow distribution characteristics of the hot water header. Experimental results show that the selection of the pump head and differential pressure are very important to save running energy of the system, and high differential pressure needs more friction loss in the case of suitable differential pressure for balancing of the header.

A Numerical Analysis on the Optimum Design of a Duct with Multiple Outlets in a Medium Bus (중형버스 다출구 덕트의 최적설계에 관한 해석적 고찰)

  • 김민호;천인범;이대훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.223-233
    • /
    • 2002
  • The air distribution duct with multiple outlets is an essential part of automotive air-conditioning system In a bus. The estimation of airflow rate in an automotive air-conditioning duct is typically very complicate due to large variations in cross-sectional area and abrupt changes in flow direction, as well as unbalanced distribution of the flow. In this paper, the flow characteristic in a duct with multiple outlets is investigated through experiment, CFD simulation and a one-dimensional simulation. Numerical simulations have been performed for two simplified air conditioning ducts with multiple outlets used in a medium bus. The three dimensional Navier-Stokes code was used to evaluate the overall pressure, velocity Held, and distribution rate at each diffuser according to the change of various design parameters such as ratio of cross-sectional area and radius of bifurcated region. In addition, a one-dimensional program based on Bernoulli equation was developed to obtain optimized diffuser area required to equalize discharge flow rate at each outlet. As a result of this study, optimized diffuser area of design variable by one-dimensional program was very reasonable as compared to the trend deduced from CFD Simulation. Therefore, the simple and convenient one-dimensional analysis developed in this study can be applied in practical design procedure for air-conditioning duct.

A Numerical Study on R410A Charge Amount in an Air Cooled Mini-Channel Condenser (공랭식 미소유로 응축기의 R410A 충전량 예측에 관한 수치적 연구)

  • Park, Chang-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.710-718
    • /
    • 2010
  • A numerical study was performed to predict refrigerant charge amount in a mini-channel condenser for a R410A residential air-conditioning system. Multi-channel flat tubes with 12 mini-channels of 1.17 mm average hydraulic diameter for each tube were applied to the condenser. The condenser consisted of 3 passes, and the first, second, and third pass had 44, 19, and 11 tubes, respectively. Each pass was connected by a vertical header. In this study, the condenser was divided into 410 finite volumes, and analyzed by an $\varepsilon$-NTU method. With thermophysical properties and void fraction models for each volume element, the R410A amount distribution and a total charge amount in the condenser were calculated. The predicted total charge amount was compared with the experimentally measured charge amount under a standard ARI A condition. The developed model could predict the charge amount in the mini-channel condenser within prediction errors from -23.9% to -3.0%. Air velocity distribution at the condenser face was considered as non-uniform and uniform by the simulation model, and its results showed that the air velocity distribution could significantly influence the charge amount and vapor phase distribution in the condenser.