• Title/Summary/Keyword: Air Compressor Design

Search Result 319, Processing Time 0.026 seconds

Performance of a 2 Room Multi-Heat Pump with a Constant Speed Compressor

  • Kwan Young Chul;Kwon Jeong-Tae;Jeong Ji Hwan;Lee Sang Jae;Kim Dae Hun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.4
    • /
    • pp.184-191
    • /
    • 2004
  • In order to improve the performance of a 2 room heat pump with a constant speed compressor, the optimum refrigeration circuit of the heat pump with different cooling and heating capacities is developed by applying capillary tubes. The refrigeration circuit is composed of four parts; a heating circuit, a cooling circuit, a by-pass circuit and a balance circuit. The performance of the 2 room heat pump are investigated from a rating experiment and a reliability experiment, using the calorimeter. Results of the rating experiment show that the capacity of heat pump is about $93\%$ of the design value. In particular, the capacity of the cooling single operation is about $13\%$ higher than the design value, and the capacity of the heating multi operation is about $5\%$ higher than the design value. From the reliability experi-ment, it is found that the lowest driving voltage of the compressor is about $75\%$ of the rating voltage. Also the compressor is reoperated normally under the flood back and the over load.

Computer Simulation of an Automotive Air-Conditioning in a Transient Mode

  • Oh, Sang-Han;Won, Sung-Pil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.220-228
    • /
    • 2002
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as a key design variable. Therefore, transient characteristics of each system component are essential to the preliminary design as well as steady-state performance. The objective of this study is to develop a computer simulation model and ostinato theoretically the transient performance of an automotive air-conditioning system. To do that, the mathematical modelling of each component, such as compressor, condenser, receiver/drier, expansion valve, and evaporator, is presented first of all. The basic balance equations about mass and energy are used in modelling. For detailed calculation, condenser and evaporator are divided into many sub-sections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in this analysis, but the quasisteady state ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. Also it is assumed that there are no heat loss and no pressure drop in discharge, liquid, and suction lines. The developed simulation model is validated by comparing with the laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed well with those of test data in this case.

Transient Simulation of an Automotive Air-Conditioning System (자동차 에어컨 비정상과정 시뮬레이션)

  • 오상한;원성필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1089-1096
    • /
    • 2001
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as the key design variable. Therefore, understanding of the overall transient characteristics of the system is essential to the preliminary design as well as steady-state characteristics. The objective of this study is to develop a computer simulation model and estimate theoretical1y the transient performance of an automotive air-conditioning system. To accomplish this, a mathematical modelling of each component, such as compressor, condenser, expansion valve, and evaporator, is presented first of all. For a detailed calculation, condenser and evaporator are divided into many subsections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in an attempt to simplify the ana1ysis, but the quasi-static ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. The developed simulation model is validated with a comparison to laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed fairly well wish those of test data in this case.

  • PDF

The Lubrication Characteristics of Rotary Compresssor for refrigeration & air-conditioning (Part I; The analysis of Rolling Piston behavior ) (냉동, 공조용 로터리 콤프레서의 윤활 특성 제1보;롤링 피스톤의 거동해석)

  • 조인성;김진문;백일현;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.7-16
    • /
    • 1996
  • Rapid increase of refrigeration & air-conditioning system( r & a system ) in modern industries brings attention to the urgency of development as a core technology in the area. And it required to the compatibility problem of r & a system to alternative refrigerant for the protection of environment. Then, it is requested to research about the lubrication characteristics of refrigerant compressor which is the core thechnology in the r & a system. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressor. Therefore, theoetical investigation of the lubrication characteristics of rotary compressor for r & a system is studied. And the Runge-Kutta method is used for the analysis of the behavior of rolling piston in the rotary compressor. The results show that the rotating speed of shaft and the discharge pressure have an important effect upon the angular velocity of the rolling piston. This results give important basic data for the further lubrication analysis and design of the rotary compressor.

  • PDF

Conceptual design of expander-compressor unit for fuel cell systems (연료전지용 팽창기-압축기 개념설계)

  • Ahn, Jong-Min;Kwon, Tae-Hun;Kim, Hyun-Jin;Yang, Si-Won
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.578-583
    • /
    • 2006
  • This paper introduces conceptual design of scroll expander-compressor unit for fuel cell. Since air discharged out of the fuel cell stack after reaction has still high pressure energy, some power can be extracted out of it by directing it to pass through an expanding device so that the extracted power can be used to drive an auxiliary compressor. For this purpose, a scroll type expander coupled to a scroll type compressor was designed: orbiting scroll of the expander and that of the compressor were made to share three of common drive pins installed in the mid frame plate, and central cavity in the mid-plate was used as a back pressure chamber to provide axial compliance for both orbiting scrolls. Performance analysis for the expander showed that the shaft power of the expander could reduce the auxiliary power consumption in the fuel cell by about one third at the scroll clearance of $10{\mu}m$.

  • PDF

A Study of Improving Transmissibility for Grommets in Air conditioner Compressor (에어컨 압축기 진동전달률 개선을 위한 그로메트 연구)

  • Park, Hong-Ul;Lee, Jai-Kwon;Mo, Jin-Yong;Park, Deug-Yong;Han, Hyung-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.651-655
    • /
    • 2004
  • This paper studies the designing method and application for grommets, rubber material used to absorb vibration on the air conditioner compressor. The existing grommet with hardness 40 degrees, EPDM, has the high transmissibility on the compressor that causes additional structure born sound. The problem for EPDM is transformation over long time usage possibly due to its design in which stress is concentrated on a certain position. In order to resolve it, silicon material was previously used with the same design in some models. The vibration performance did improve, but the cost became high. Below are the major developments regarding improvements in compressor rubber material, vibration performance and durability through design change, and new grommet to attain cost reduction. 1 The optimum grommet design for stress even distribution through FEM methods. 2. Comparison for grommet material and design for improved transmissibility. 3. Assess for grommets durability and product applications.

  • PDF

Development of a Compressor Design System Using Configuration Design Method (편집설계 기법을 이용한 압축기 설계 시스템 개발)

  • Lee, Kang-Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.1
    • /
    • pp.52-60
    • /
    • 2011
  • In this research, we developed a design system for a compressor of an air conditioner using solid CAD system. The developed design system has some characteristics. First, the design system used a configuration design method, so a designer can design a compressor very quickly by using the constructed master libraries. Next, the system was developed to be used not only by engineers but also by salesmen. It is very easy for a user to use it, so a salesman can get a result very easily with the design system. And it has some design modules which give a considerable convenience to designers. Actually, designers are accustomed to the module based design. Then, it has calculation and analysis functions. Volume and mass of a part, and interference between parts are calculated by using the geometric calculation function of a solid CAD system. Also a packaging calculation was implemented to get the smallest space to package compressors for transportation and storing. An interface with a program to analyze the vibration of a compressor was developed in this design system. The design system is similar to CBD (Case-Based Design) system in the view of the whole design process.

Rotordynamci Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings (공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향)

  • Kim, Tae-Ho;Lee, Yong-Bok;Kim, Chang-Ho;Kim, Kwang-Ho;Lee, Nam-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.191-198
    • /
    • 2002
  • Oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of the conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compression with two impellers at operating speed, 39,000rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rate. Correlation between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly developed in aerodynamic unsteady region. Thus, these results show that it is beneficial to design high speed rotating turbomachinery considering coupling effect between aerodynamic instability and rotordynamic force.

  • PDF

Rotordynamic Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings (공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향)

  • Kim, Tae-Ho;Lee, Yong-Bok;Kim, Chang-Ho;Lee, Nam-Soo;Kim, Kwang-Ho;Shin, You-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.62-69
    • /
    • 2003
  • An oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of a conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compressions with two impellers at a operating speed of 39,000 rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rates. Correlations between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly observed in an aerodynamic unsteady region. Thus, these results show that it is beneficial to design high-speed rotating turbomachinery by considering coupling effect between aerodynamic instability and rotordynamic force.

Friction Characteristics Between Vane and Rolling Piston in a Rotary Compressor Used for Refrigeration and Air-Conditioning Systems

  • Cho, Ihn-Sung;Baek, Il-Hyun;Oh, Seok-Hyung;Jung, Jae-Youn
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.17-21
    • /
    • 2008
  • The rolling piston type rotary compressor has been widely used for refrigeration and air-conditioning systems due to its compactness and high-speed operation. The present study is one of studies to maximize the advantages of refrigerant compressors. In addition, because friction characteristics of the critical sliding component is essential in the design of refrigerant compressors, the present study also analyzed the lubrication characteristics of a rotary compressor used for refrigeration and air-conditioning systems. In order to measure the friction force between the vane and the rolling piston, an experimental apparatus known as the Pin-on-Disk was used. Load is applied by the hydraulic servo valve controlling the pressure of the hydraulic cylinder. The results showed that the rotational speed of the shaft, the operating temperature, and the discharge pressure significantly influenced the friction force between the vane and the rolling piston.