• 제목/요약/키워드: Air Bag

검색결과 243건 처리시간 0.025초

에어백을 이용한 신체충격완화장치 (Hip Protector against the Impact by Fall Using Air-bag)

  • 박지수;김충현
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.639-643
    • /
    • 2012
  • The hip protector has been developed using the air-bag which has the capability of attenuating an impact. The impact force using the PVC air-bag was decreased by values of 27.5% on average, compared to the impact force without the air-bag. In the experiment, the standard deviation of the impact force attenuation rate was 0.78%. It means that the dimensions of the air-bag have no significant effects to reduce the impact. We believe that it is possible to design light and cheap hip protectors with air-bag to prevent the femur fracture.

Air-Bag Head 가압식 300mm 웨이퍼 폴리싱 테이블의 가압 분포 해석 (Analysis of Contact Pressure for a 300mm Wafer Polishing Table with Air-Bag Head)

  • 노승국
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.310-317
    • /
    • 2013
  • In this paper, the contact pressure of the wafer and polishing pad for final polishing process for 300 mm-wafer were investigated through numerical analysis using FEM tool, ANSYS. The distribution of the contact pressure is one of main parameters which affects on the flatness and surface roughness of polished wafers. Two types of polishing head, a hard type head with ceramic disk and a soft type head with air bag were considered. The effects of the deformation and initial shape of table on the contact pressure were also examined. Both heads and tables were modeled as 3D finite element model from solid model, and the material properties of polishing pads and rubber plate for the air-bag head were obtained from tensile tests. The contact pressure deviation on wafer surface was smaller with air bag head than hard type head even when the table had form errors such as convex or concave. From this 3D analysis, it could be concluded that the air-bag head has better uniformity of the contact pressure on wafer. Also, the effects of inner diameter of air bag and radial clearance between wafer and retainer were investigated as view point of contact pressure concentration on the edge of wafer.

새로운 충돌 판별 알고리즘과 가속도 센서의 위치 (New Crash Discrimination Algorithm and Accelerometer Locations)

  • 정현용;김영학
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.182-193
    • /
    • 2000
  • Several metrics have been used in crash discrimination algorithms in order to have timely air bag deployment during all frontal crash modes. However, it is still challengine to have timely air bag deployment especially during the oblique, the pole and the underride crash mode. Therefore, in this paper a new crash discrimination algorithm was proposed, using the absolute value of the deceleration change multiplied by the velocity change as a metric, and processing the metric as a function of the velocity change. The new algorithm was applied for all frontal crash modes of a minivan and a sports utility vehicle, and it resulted in timely air bag deployment for all frontal crash modes including the oblique, the pole and the underride crash mode. Moreover, it was proposed that an accelerometer be installed at each side of the rails, rockers or pillars to assess the crash severity of each side and to deploy the frontal air bags at different time especially during an asymmetric crash such as an oblique and an offset crash. As an example, the deceleration pulses measured at the left and right B-pillar·rocker locations were processed through the new algorithm, and faster time-to-fires were obtained for the air bag at the struck side for the air bag at the other side.

  • PDF

간헐탈진형 충격기류식 여과집진장치의 여과포 반사거리 예측 (Prediction of Off-line Type Pulse Air Jet Bag Filter Reflection Distance)

  • 손정삼;정용현;서정민
    • 한국환경과학회지
    • /
    • 제32권11호
    • /
    • pp.801-809
    • /
    • 2023
  • The purpose of this study is to predict the reflection distance following to the pulsing pressure, total air supplying, filter bag size using numercial analysis techniques and use it as an efficient operation condition and economic data for off-line type pulse air jet bag filter. In this research, filtration area 6 m2 condition, calculate filter resistance coefficient for simulation through the main experiments using coke dust. Ansys fluent V19.0 apply to CFD simulation, and analysis pulsing characteristics about pulsing pressure, filtration velocity and nozzle diameter. The maximum reflecting distance of off-line type pulse air jet bag filter is 1,000 mm regardless of total air supplying at over the 42 L/m2 conditions, that indicates off-line type can extend filter bag length 1,000 mm than on-line type. In order to effective primary and secondary pulsing of off-line type pulse air jet bag filter, over the 5 bar of pulsing pressure and over the 42 L/m2 of total air supplying are needed.

On the Hydrodynamic Forces Acting on a Partially Submerged Bag

  • Lee, Gyeong-Joong
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제2권1호
    • /
    • pp.140-155
    • /
    • 1994
  • The hydrodynamic problem is treated here when a pressurized bag is submerged partially in the water and the end points of it oscillate. SES(Surface Effect Ship) has a bag filled with pressurized air at the stern in order to prevent the air leakage, and the pitch motion of SES is largely affected by the hydrodynamic force of the bag. The shape of a bag can be determined with the pressure difference between inside and outside. Once the hydrodynamic pressure is given, the shape of a bag can be obtained, however in order to calculate the hydrodynamic pressure we should know the shape change of the bag, and vice versa. Therefore the type of boundary condition on the surface of a bag is a moving boundary like a free surface boundary. The present paper describes the formulation of this problem and treats a linearized problem. The computations of the radiation problem for an oscillating bag are shown in comparison with the case that the bag is treated as a rigid body. The hydrodynamic forces are calculated for various values of the pressure inside the bag and the submerged depth.

  • PDF

자동차 에어백의 제어부품 불량에 의한 고장현상 및 후방 추돌에 관련된 에어백 미전개에 대한 사례 연구 (Study of Examples for Air Bag Non-deployment Including Rear Collision and Failure Phenomenon by Damage of Control Parts in Vehicle Air Bag)

  • 이일권;김영규;문학훈
    • 한국가스학회지
    • /
    • 제16권6호
    • /
    • pp.102-106
    • /
    • 2012
  • 이 논문의 목적은 현장에서 발생되는 자동차 에어백 시스템의 고장사례를 모아 분석하고 연구하는 것이다. 첫 번째 사례에서는 에어백 시스템의 클럭 스프링과 에어 백 모듈 사이 배선 핀의 납땜부가 이탈되어, 배선 접촉불량에 의해 핀이 흔들릴 때마다 에어백의 작동불량 현상이 발생되는 것을 확인하였다. 두 번째 사례에서는 에어백 컴퓨터 내부의 단품 소자의 손상으로 인해 에어백 작동불량 현상이 발생된 것을 확인하였다. 세 번째 사례에서는 조수석 시트 벨트 프리텐셔너(pre-tensioner)의 내부 핀과 저항을 연결해 주는 납땜부 이탈로 인해 에어백 경고등이 점등된 것을 확인하였다. 네 번째 사례에서는 승용자동차가 화물자동차의 후면을 추돌하였을 때 때 범퍼는 상대편 차량보다 낮아 아래로 끼어들게 된다. 이 때 사고의 충격은 차량의 프레임부분에 전달되지 않기 때문에 충격센서가 설치된 프레임부분에 충격이 적게 전달되어 에어백이 작동하지 않은 것을 확인하였다.

에어백과 안전벨트가 운전자 안전에 미치는 영향에 관한 연구 (Effect of Air Bag and Seat Belt on Driver's Safety)

  • 유장석;장명순
    • 대한교통학회지
    • /
    • 제21권2호
    • /
    • pp.7-16
    • /
    • 2003
  • 본 논문은 자동차 충돌사고시 승객보호장구인 에어백과 안전벨트가 운전자 안전에 미치는 영향을 컴퓨터 모의충돌실험을 통해 연구하였다. 에어백 전개특성은 실제 에어백 전개 단품실험을 통해, 모의충돌실험차량의 감속도 특성은 실제 차량충돌실험 결과자료를 기초로 자동차 충돌해석 전문프로그램인 LS-DYNA를 이용하여 도출하였고, 에어백과 안전벨트가 운전자 안전에 미치는 영향은 승객거동해석 전문프로그램인 MADYMO를 이용하여 연구하였다. 연구결과. 충돌 후 운전자 머리에 작용하는 1차 접촉 가속도에 대한 저감효과는 에어백을 장착하고 안전벨트도 착용한 A상황이 가장 높고, 다음으로 B상황, C상황, D상황 순이다. 안전벨트가 운전자 머리보호에 미치는 효과는 에어백을 장착한 경우, 안전벨트를 착용한 경우가 안전벨트를 착용하지 않은 경우에 비해 최소 12.2%, 최대 32.5% 증대되고. 에어백을 장착하지 않은 경우는 안전벨트를 착용한 경우가 안전벨트를 착용하지 않은 경우에 비해 최소 14.2%, 최대 28.0% 운전자 머리보호 효과가 증대된다. 에어백이 운전자 머리보호에 미치는 효과는 안전벨트를 착용한 경우, 에어백을 장착한 경우가 에어백을 장착하지 않은 경우에 비해 최소 45.0%, 최대 59.8% 증대되고, 안전벨트를 착용하지 않은 경우에는 에어백을 장착한 경우가 에어백을 장착하지 않은 경우에 비해 최소 39.4%, 최대 66.5% 운전자 머리 보호효과가 증대된다. 특히, 에어백을 장착하고 안전벨트를 착용한 경우가 에어백을 장착하지 않고 안전벨트도 착용하지 않은 경우에 비해 최소 52.9%, 최대 70.5% 운전자 머리를 부상으로부터 보호하는 효과가 증대된다. 따라서. 충돌 후 운전자의 인명피해를 최소화하고 안전을 극대화하기 위해서는 차량에 에어백을 장착함과 동시에 안전벨트를 반드시 착용한 후 운행해야한다. 그러나, 충돌속도가 60Km/h 이상이면 에어백을 장착하고 안전벨트를 착용하였더라도 안전장구로써 기능이 저하되어 운전자 머리를 부상으로부터 보호할 수 없으므로 안전장구가 운전자 안전을 지켜주는 최선의 방법이 아니라 보조장구라는 것을 반드시 인식하여야 할 것이다.

승용차 정면충돌에서 에어백 전개가 운전자 손상에 미치는 영향 (The Effect that Air Bag Deployment in Car Head-on Collision on Injury to Driver)

  • 전혁진;김상철;이강현
    • 자동차안전학회지
    • /
    • 제10권2호
    • /
    • pp.13-19
    • /
    • 2018
  • The purpose of this study was to evaluate the effect of air bag deployment in passenger car head-on collisions on injuries to the driver. The drivers in head-on collisions who were brought to the emergency rooms of two hospitals from January 2011 and October 2014 were evaluated, as were the vehicles involved. The driver injury level were assessed by utilizing Collision Deformation Classification (CDC) codes, and the Abbreviated Injury Scale (AIS) and Injury Severity Score (ISS), respectively. In this study, it was shown that the chest ISS and AIS were significantly high when an air bag only is deployed. A statistically significant difference was found in the crush extent when the driver who fastened the seatbelt was found to be affected more than the ISS 9. Even when an air bag is deployed in a head-on car collision, injury severity can vary according to accident circumstances and crash severity. Accordingly, first aid can be rapidly given, and the injured person can be quickly referred to a hospital, only if the assessment of persons involved in a vehicle accident is accurately carried out.

연속탈진형 충격기류식 여과집진장치의 여과포 유효탈진거리 예측 (A Study on Prediction of On-line Type Pulse Air Jet Bag Filter Effective Pulsing Distance)

  • 손정삼;서정민;박정호
    • 한국환경과학회지
    • /
    • 제32권8호
    • /
    • pp.555-561
    • /
    • 2023
  • A study is to predict the effective pulsing distance following to the pulsing pressure, nozzle diameter, filtration velocity using numercial analysis techniques and use it as an efficient operation condition and economic data for on-line type pulse air jet bag filter. Filtration area 6 m2 condition, calculate filter resistance coefficient for simulation through the primary experiments using coke dust. For CFD simulation, analysis pulsing characteristics about nozzle diameter, filtration velocity and pulsing pressure. The maximum pulsing length of on-line type pulse air jet bag filter, in 10mm nozzle, filtration velocity 1.5m/min and pulsing pressure 5 bar conditions, is 2,285 mm, maximum length is 76.2% of the total filter bag, which is sufficient to pulsing. In 12mm nozzle, pulsing pressure 5 bar and filtration area 1.22 m2 conditions, the maximum pulsing length of on-line type pulse air jet bag filter is 1,744~2,952 mm, and the maximum length is 2,952 mm indicates pulsing air can be reached to the bottom of filter bag. When the nozzle diameter is increased 8mm to 10mm, maximum pulsing length is extended 40~47%, and increased 10mm to 12 mm, maximum pulsing length is extended 10~17%. For effective pulsing, over the 5bar of pulsing pressure and larger than 10 mm of nozzle diameter are required.

A Deformation Model of a Bag-Finger Skirt and the Motion Response of an ACV in Waves

  • Lee, Gyeong-Joong;Rhee, Key-Pyo
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제2권1호
    • /
    • pp.29-46
    • /
    • 1994
  • In this paper, the effect of a skirt deformation on the responses of an Air Cushion Vehicle in waves is investigated. The air in the bag and plenum chamber is assumed to be compressible and to have a uniform pressure distribution in each volume. The free surface deformation is determined in the framework of a linear potential theory by replacing the cushion pressure with the pressure patch which is oscillating and translating uniformly. And the bag-finger skirt assumed to be deformed due to the pressure disturbance while its surface area remained constant. The restoring force and moment due to the deformation of bag-finger skirt from equilibrium shape is incorporated with the equations of heave and pitch motions. The numerical results of motion responses due to various ratios of the bag and cushion pressure or bag-to-finger depth ratios are shown.

  • PDF