• 제목/요약/키워드: Air & Gas

검색결과 5,016건 처리시간 0.025초

난류 유동을 갖는 가스 포일 저널 베어링의 성능 예측 (Performance Predictions of Gas Foil Journal Bearings with Turbulent Flows)

  • 문진혁;김태호
    • Tribology and Lubricants
    • /
    • 제35권3호
    • /
    • pp.190-198
    • /
    • 2019
  • Gas foil bearings (GFBs) enable small- to medium-sized turbomachinery to operate at ultra-high speeds in a compact design by using ambient air or process gas as a lubricant. When using air or process gas, which have lower viscosity than lubricant oil, the turbomachinery has the advantage of reduced power loss from bearing friction drag. However, GFBs may have high Reynolds number, which causes turbulent flows due to process gas with low viscosity and high density. This paper analyzes gas foil journal bearings (GFJBs) with high Reynolds numbers and studies the effects of turbulent flows on the static and dynamic performance of bearings. For comparison purposes, air and R-134a gas lubricants are applied to the GFJBs. For the air lubricant, turbulence is dominant only at rotor speeds higher than 200 krpm. At those speeds, the journal eccentricity decreases, but the film thickness, power loss, and direct stiffness and damping coefficients increase. On the other hand, the R-134a gas lubricant, which that has much higher density than air, causes dominant turbulence at rotor speeds greater than 10 krpm. The turbulent flow model predicts decreased journal eccentricity but increased film thickness and power loss when compared with the lamina flow model predictions. The vertical direct stiffness and damping coefficients are lower at speeds below 100 krpm, but higher beyond that speeds for the turbulent model. The present results indicate that turbulent flow effects should be considered for accurate performance predictions of GFJBs with high Reynolds number.

ZnO를 기반으로한 에탄올 가스 센서 (ZnO-based Ethanol Gas Sensor)

  • 최동한
    • 센서학회지
    • /
    • 제22권6호
    • /
    • pp.444-449
    • /
    • 2013
  • ZnO-based ethanol gas sensors were fabricated by the painting method and their electrical and ethanol gas sensing characteristics were investigated. The ZnO-Pt (1 wt.%) film heat treated at $400^{\circ}C$, for 2 hrs. in air showed the highest sensitivity to ethanol gas in air at an operating temperature of $250^{\circ}C$ The sensitivity of the gas sensors to 1000 ppm ethanol in air at $250^{\circ}C$ was 8.7 and rising time and falling time of the gas sensors were 3.12 minutes and 25 minutes, respectively.

Gas Separation Membranes - Current Status

  • Puri, Pushpinder S.
    • 멤브레인
    • /
    • 제6권3호
    • /
    • pp.117-126
    • /
    • 1996
  • Membrane-based gas separation systems are now widely accepted and employed as unit operation in industrial gas, chemical, and allied industries. Following their successful commercialization in the late seventies to recover hydrogen from ammonia purge gas streams, membrane-based systems have gained acceptance in a wide variety of applications. Numerous systems are in operation today to: recover hydrogen from other purge gas and hydrocarbon streams; adjust the $H_{2}/CO$ ratio in syngas; remove $CO_{2}$ from natural gas; recover helium; dry gas streams; and separate air. Lower cost, ease of operation, operational flexibility and portability are a few of the reasons membrane-based systems are chosen over absorption and cryogenic-based separations in certain applications.

  • PDF

이류체 노즐을 이용한 유전체장벽방전 플라즈마 가스의 OH 라디칼 생성 향상 (Enhancement of OH Radical Generation of Dielectric Barrier Discharge Plasma Gas Using Air-automizing Nozzle)

  • 박영식
    • 한국환경과학회지
    • /
    • 제27권8호
    • /
    • pp.621-629
    • /
    • 2018
  • Many chemically active species such as ${\cdot}H$, ${\cdot}OH$, $O_3$, $H_2O_2$, hydrated $e^-$, as well as ultraviolet rays, are produced by Dielectric Barrier Discharge (DBD) plasma in water and are widely use to remove non-biodegradable materials and deactivate microorganisms. As the plasma gas containing chemically active species that is generated from the plasma reaction has a short lifetime and low solubility in water, increasing the dissolution rate of this gas is an important challenge. To this end, the plasma gas and water within reactor were mixed using the air-automizing nozzle, and then, water-gas mixture was injected into water. The dissolving effect of plasma gas was indirectly confirmed by measuring the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the formation of OH radical) solution. The plasma system consisted of an oxygen generator, a high-voltage power supply, a plasma generator and a liquid-gas mixing reactor. Experiments were conducted to examine the effects of location of air-automizing nozzle, flow rate of plasma gas, water circulation rate, and high-voltage on RNO degradation. The experimental results showed that the RNO removal efficiency of the air-automizing nozzle is 29.8% higher than the conventional diffuser. The nozzle position from water surface was not considered to be a major factor in the design and operation of the plasma reactor. The plasma gas flow rate and water circulation rate with the highest RNO removal rate were 3.5 L/min and 1.5 L/min, respectively. The ratio of the plasma gas flow rate to the water circulation rate for obtaining an RNO removal rate of over 95% was 1.67 ~ 4.00.

하이브리드/이중 선회제트 연소기에서 공기 예열온도에 의한 배출 특성 연구 (A study of Overall Combustion Characteristics according to the Air Preheated Temperature in a Hybrid/Dual Swirl Jet Combustor)

  • 최인찬;조준익;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.149-152
    • /
    • 2012
  • The laboratory experiments have been conducted to investigate the effects of air preheated temperature on the emission characteristics by a model gas turbine burner with a hybrid/dual swirl jet flames configuration. The concentration of NOx and CO emissions, and flue gas temperature at combustor exit were measured with varying the equivalence ratio for different air preheated temperatures of 300, 400, 500K at atmospheric pressure. It was overall shown that the NOx and CO emissions, and flue gas temperature were decreased according to the decreasing of equivalence ratio due to the effects of lean premixed combustion regardless of the air preheated temperature. Experimental results of a lean premixed flames configuration indicated that the NOx emission was increased with higher inlet air temperature and air flow rate, which is attributed to the increasing of flue gas temperature and heat release related to the thermal NOx mechanism. But the CO emission was shown the opposite tendency, that is, the CO emission was decreased with increasing of inlet air temperature and flow rate.

  • PDF

탈설계점 효과를 고려한 석탄가스화 복합발전용 가스터빈의 성능평가 (Performance Evaluation of the Gas Turbine of Integrated Gasification Combined Cycle Considering Off-design Operation Effect)

  • 이찬;김용철;이진욱;김형택
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.209-214
    • /
    • 1998
  • A thermodynamic simulation method is developed for the process design and the performance evaluation of the gas turbine in IGCC power plant. The present study adopts four clean coal gases derived from four different coal gasification and gas clean-up processes as IGCC gas turbine fuel, and considers the integration design condition of the gas turbine with ASU(Air Separation Unit). In addition, the present simulation method includes compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. The present prediction results show that the efficiency and the net power of the IGCC gas turbines are seperior to those of the natural gas fired one but they are decreased with the air extraction from gas turbine to ASU. The operation point of the IGCC gas turbine compressor is shifted to the higher pressure ratio condition far from the design point by reducing the air extraction ratio. The exhaust gas of the IGCC gas turbine has more abundant wast heat for the heat recovery steam generator than that of the natural gas fired gas turbine.

  • PDF

가스터빈 내부 냉각계통 발화에 의한 고온부품 손상의 현상학적 고찰 (A Phenomenological Review on the Damage of Hot Gas Parts caused by Explosion of Gas Turbine Cooling System)

  • 유원주;이승현
    • 대한안전경영과학회지
    • /
    • 제12권2호
    • /
    • pp.75-82
    • /
    • 2010
  • Gas turbines for power generating operate in a very high temperature condition and use natural gas for fuel. For this reason, many cases of damage happen at hot gas parts which are severely affected by high temperature gas and many cases of explosion occur by fuel gas. So a lot of efforts should be made to prevent hot gas parts damage and gas explosion accidents. Though there are many damage cases and explosion accidents, it is very difficult to find out the root causes of hot gas parts damage caused by gas explosion due to gas leakage in the heat exchanger for air cooling and gas heating. To prevent gas turbine from damage caused by gas explosion, removal of leakage gas from gas turbine is inevitably required before firing the gas turbine and installing alarm systems is also required for detecting gas leakage at stop valve to turbine while shut down.

콘덴싱가스보일러 제어를 위한 공급수알고리즘 (The Supply Water Algorithm for a Condensing Gas Boiler Control)

  • 한도영;유병강
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.441-448
    • /
    • 2011
  • The energy consumption of a condensing gas boiler may be greatly reduced by the effective operation of the unit. In this study, the supply water algorithm for a condensing gas boiler control was developed by using the fuzzy logic. This includes the supply water set temperature algorithm, and the control algorithms of a gas valve, a blower and a pump. For the set temperature algorithm, the outside air temperature and the return water temperature were used as input variables. The supply water temperature difference and its slope were used as input variables of the gas valve and blower control algorithm. And the supply water temperature and the return water temperature were used as input variables of the pump control algorithm. In order to analyse performances of these algorithms, the dynamic model of a condensing gas boiler was used. The initial start-up test, the supply water set temperature change test, the outside air temperature change test, and the return water temperature change test were performed. Simulation results showed that algorithms developed in this study may be practically applied for the effective control of a condensing gas boiler.

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.

가스터빈 내부 냉각계통 발화에 의한 고온부품 손상의 현상학적 고찰 (A Phenomenological Review on the Damage of Hot Gas Parts caused by Explosion of Gas Turbine Cooling System)

  • 유원주;이승현
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2010년도 춘계학술대회
    • /
    • pp.81-95
    • /
    • 2010
  • Gas turbines generating power operate in high temperature condition and use natural gas as fuel. For that reason, there are many cases where damage is done to the hot gas parts caused by the high temperature and many accidents occur like gas explosions, then various efforts are needed to maintain the hot gas parts and prevent accidents. It is difficult to find the root causes of damage to the hot gas parts from the gas explosion caused by gas leakage through rotor cooling air line from fuel gas heat exchanger during the shut down. To prevent gas turbine from damage, removal of gas leakage inside of gas turbine is required by purging the turbine before firing, improving the fuel gas heating system and installing alarm systems for detecting gas leakage from stop valve to turbine while the gas turbine has shut down.

  • PDF