• 제목/요약/키워드: Air

검색결과 47,655건 처리시간 0.057초

에너지소비를 고려한 실내공기청정기의 풍량별 입자 청정화능력 분석 (Analysis on Particle Cleaning Capacity of Indoor Air Cleaners for Different Flow Rates Considering Energy Consumption)

  • 한방우;강지수;김학준;김용진;원효식
    • 한국입자에어로졸학회지
    • /
    • 제9권3호
    • /
    • pp.139-147
    • /
    • 2013
  • The performances of indoor air cleaners including particle cleaning capacity and collection efficiency are usually tested at the condition of the maximum air flow rate of the air cleaners. However, the power consumption of the air cleaners is highly dependent on the air flow rate of the individual air cleaners. Therefore, there seems to be an optimized air flow rate for the air cleaning capacity considering power consumption. In this study, clean air delivery rate(or standard useful area as suggested room size) and power consumption have been investigated for different maximum air flow rates of 15 air cleaners and then compared those for different air flow rate modes of the individual 5 air cleaners selected from the 15 cleaners. For the maximum air flow rate conditions of 15 air cleansers, the power consumption per unit area was less related to the maximum air flow rate. However, for the different air flow rate modes of the selected 5 air cleaners, the lower power consumption per unit area was corresponding to the lower air flow rate mode of the individual air cleaners. When considering the operation time to the desired particle concentrations, there was an optimized one in the medium air flow rate modes for the individual air cleaners. Therefore, not only the maximum air flow rate but also lower air flow rates of individual air cleaners should be considered for estimating air cleaning capacity based on energy consumption per unit area.

Numerical simulation of air layer morphology on flat bottom plate with air cavity and evaluation of the drag reduction effect

  • Hao, W.U.;Yongpeng, O.U.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.510-520
    • /
    • 2019
  • To investigate the morphology characteristics of air layer in the air cavity, a numerical method with the combination of RANS equations and VOF two-phase-flow model is proposed for a plate with air cavity. Based on the model above, the dynamic and developmental process of air layer in the air cavity is studied. Numerical results indicate that the air layer in the plate's air cavity exhibits the dynamic state of morphology and the wavelength of air layer becomes larger with the increasing speed. The morphology of air layer agrees with the Froude similarity law and the formation of the air layer is not affected by the parameters of the cavity, however, the wave pattern of the air layer is influenced by the parameters of the cavity. The stable air layer under the air cavity is important for the resistance reduction for the air layer drag reduction.

수치해석을 이용한 바닥공조 시스템의 공기환경 평가 (Numerical Study on Indoor Air Quality Based on Age of Air for the Underfloor Air Distribution System)

  • 방승기;안혜린;이원근;문기선;김종률;이광호
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권4호
    • /
    • pp.40-46
    • /
    • 2016
  • In order to improve air quality of indoor environment, studies of the underfloor air distribution (UFAD) system for application in buildings are actively in progress based on temperature and air flow distribution. However, although the age of air is the major evaluation parameter, there has been very little study on this parameter for the UFAD system. In this study, we investigated the age of air to reach the air diffuser, which is installed at the bottom of the interior by the UFAD system. Computational fluid dynamics simulations showed no regular pattern to the maximum value of the age of air in accordance with air flow rate and the velocity at air diffuser. These factors can be deduced from air movement by considering that air emitted from air conditioners was rotated according to the bottom shape of the floor, and then, the age of air in the rotation center was increased. The average age of air of internal interior was reduced considerably as the flow velocity at the underfloor air diffuser was increased from 0.5 m/s to 1.0 m/s However, the age of air was not substantially affected with change in the air volume. Moreover, when the flow velocity at the underfloor air diffuser was higher than 1.0 m/s, the age of air showed no significant difference with change in air volume or height of measurement. These results imply that indoor air quality is more substantially influenced by flow velocity than air volume, and the appropriate flow velocity is 1 m/s or more.

부하변동에 대한 바이패스 공조시스템의 특성 (The Characteristics of a Bypass Air Conditioning System for Load Variation)

  • 김보철;신현준;김정엽
    • 설비공학논문집
    • /
    • 제14권3호
    • /
    • pp.240-246
    • /
    • 2002
  • Bypass air conditioning systems are divided into three types; an outdoor air bypass, a mixed air bypass and a return air bypass system. What makes the return air by pass system more effective is that it directs all of moist outdoor air through the cooling coil. The bypass air conditioning system can maintain indoor R.H (Relative Humidity) less than a conventional CAV (Constant Air Volume) air conditioning system by adjusting face and bypass dampers at part load. When a design sensible load (the ratio of sensible load to total sensible load) is 70 percent (at this time, RSHF (Room Sensible Heat Factor) . 0.7), indoor R.H was maintained 59 percent by the return air bypass system, but 65 percent by the conventional CAV air conditioning system (valve control system). The bypass air conditioning system can also improve IAQ (Indoor Air Quality) in many buildings where the number of air change is high.

Korean National Emissions Inventory System and 2007 Air Pollutant Emissions

  • Lee, Dae-Gyun;Lee, Yong-Mi;Jang, Kee-Won;Yoo, Chul;Kang, Kyoung-Hee;Lee, Ju-Hyoung;Jung, Sung-Woon;Park, Jung-Min;Lee, Sang-Bo;Han, Jong-Soo;Hong, Ji-Hyung;Lee, Suk-Jo
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권4호
    • /
    • pp.278-291
    • /
    • 2011
  • Korea has experienced dramatic development and has become highly industrialized and urbanized during the past 40 years, which has resulted in rapid economic growth. Due to the industrialization and urbanization, however, air pollutant emission sources have increased substantially. Rapid increases in emission sources have caused Korea to suffer from serious air pollution. An air pollutant emissions inventory is one set of essential data to help policymakers understand the current status of air pollution levels, to establish air pollution control policies and to analyze the impacts of implementation of policies, as well as for air quality studies. To accurately and realistically estimate administrative district level air pollutant emissions of Korea, we developed a Korean Emissions Inventory System named the Clean Air Policy Support System (CAPSS). In CAPSS, emissions sources are classified into four levels. Emission factors for each classification category are collected from various domestic and international research reports, and the CAPSS utilizes various national, regional and local level statistical data, compiled by approximately 150 Korean organizations. In this paper, we introduced for the first time, a Korean national emissions inventory system and release Korea's official 2007 air pollutant emissions for five regulated air pollutants.

서울시민의 대기 환경에 관한 인식 및 태도 (A Study on Recognition and Attitude of Residents in Seoul City about Air Environment)

  • 이정주;김신도;이경용
    • 한국환경보건학회지
    • /
    • 제21권4호
    • /
    • pp.63-74
    • /
    • 1995
  • The objective of this study were to identify the state of re. cognition and attitude of residents in Seoul city about air environment and to identify factors affecting attitude toward air environment. Study object was residents in Seoul city sampled by multistage random proportional sampling. Sample size was 0.0067%(500 persons) of total residents in Seoul city. The results were divided into two parts: (1) descriptive results of recognition and attitude toward air environment, (2) results of factor analysis to classify categories of attitudes toward air environment and regression analysis to identify factors affecting attitude toward air environment. Most of resident in Seoul city recognized that air environment in Seoul city was highly polluted and was not satisfactory. Experience of damage of air pollution was reported in about 70% of residents in Seoul city. More than 60% of residents in Seoul city had concern about air environment. Attitude toward air environment were classified into four categories using factor analysis: Necessity of intervention of local government for air environment conservation, Participation of residents and enterprises for air environment conservation, Optimistic attitude about air pollution, Preference of economy. Factors affecting the above attitudes were knowledge about air pollution, knowledge about policies and institutions related air environment conservation, concern about air environment, educational level, subjective assessment of air environment, sex, marital status. In conclusion this study suggested providing information of air environment in Seoul city to the residents and to educating residents for making positive attitude about air environment conservation.

  • PDF

개별공간의 자외선 살균 시스템 (UV Immune System of Personalized Space)

  • 정기범;최상곤
    • 설비공학논문집
    • /
    • 제21권1호
    • /
    • pp.63-70
    • /
    • 2009
  • The air sterilization systems are investigated experimentally in this paper. The goal is to reduce bacteria, mold and viruses in office air by using a UV sterilizer installed inside a partition panel and wall-mounted unit. These systems allow occupants to turn the system on/off and to control the incoming air speed and direction. The partition air sterilization system conditions and sterilizes the air, and then delivers the clean air into the personal task area through the partition panels, which are connected to the pressurized under-floor plenum. Room air exits through the return grills mounted on the ceiling. The wall-mounted air sterilization system sterilizes the air, and then delivers the clean air to the personal task area from the wall. In this study a full-size experimental environment is established to investigate the immunization performance of these air sterilization systems. A typical office space scale is used in this study in order to find an optimal system to achieve a sterilized healthy micro-environment. Multiple system parameters, including volume flow rate and velocity of supplied air, were regulated during the experiments. The more air contact these air sterilization systems had, the better disinfection performance. Over 90% of eradication ratios were obtained by these two air sterilization systems. The results indicate that these systems can efficiently disinfect office air contamination.

외기온 변화에 따른 공기-공기/공기-물 형태로 된 복합형 열펌프 시스템의 성능 특성 분석 (Performance Analysis of Hybrid Heat Pump System of the Air-to-Air/Air-to-Water with the Ambient Temperature)

  • 송현갑
    • Journal of Biosystems Engineering
    • /
    • 제25권4호
    • /
    • pp.273-278
    • /
    • 2000
  • The hybrid heat pump system of the air to air and / or air to water was composed and its COP was analyzed with the ambient temperature on the opened and closed loop system respectively. The results be indicated by the equation(7) that the COP(Coefficient of Performance) of air-source(air to air and / or air-water) heat pump is effected with the ambient air temperature and AVACTHE.(Automatic Variable Area Capillary Type Heat Exchanger) 2. The COP of air-to-water heat pump without AVACTHE decreased in accordance with the ambient temperature decrease, however in case of the heat pump with AVACTHE the COP was maintained at 2.8∼3.0 level when the ambient temperature decrease from -$5^{\circ}C$ to $-11^{\circ}C$. 3. The COP of the air-to-water heat pump operated on the open loop was higher 40∼58% than that of the heat pump operated on the close loop. 4. The lower ambient temperature air effect on the COP of the air-to-air heat pump operated on the semi closed loop could be controlled using the AVACTHE, and at the high ambient air temperature the COP increased using the Bypass circuit.

  • PDF

항공기 내 실내공기질에 관한 고찰: 이동의 증가와 건강에 미치는 영향 및 블리드에어의 영향 (Indoor Air Quality in Aircraft: The Impact of Increased Mobility and Health Effects and the Influence of Bleed Air)

  • 함승헌
    • 한국환경보건학회지
    • /
    • 제49권3호
    • /
    • pp.129-133
    • /
    • 2023
  • Background: With the rise in global mobility, aircraft indoor air quality has become a significant public health concern. This study focuses on the health implications of increased travel and bleed air-air drawn from aircraft engines for cabin pressurization and air conditioning. Objectives: This research aims to review the potential health effects related to exposure to aircraft cabin air, particularly the effects of bleed air during fume events. Methods: We conducted a literature review of existing studies on aircraft cabin air quality. We focused on both the immediate and health effects of exposure to cabin air, particularly those related to bleed air contaminants. Results: The review found a possible link between exposure to aircraft cabin air and certain health issues, especially in cabin crew and frequent flyers. There was an increased incidence of respiratory and neurological symptoms related to bleed air exposure. However, the cumulative health effects of frequent air travel remain inconclusive due to limited data. Conclusions: This study highlights the need for improving air quality in aircraft to protect public health. While further research is needed to understand the cumulative effects of frequent air travel, the reduction of exposure to bleed air contaminants should be a priority. These findings underline the need for regulatory changes and technological improvements in aircraft cabin air quality.

대형천연가스차량의 공연비제어기 설계를 위한 엔진모델 (An Engine Model of a Heavy-Duty Compressed Natural Gas Engine for Design of an Air-Fuel Ratio Controller)

  • 심한섭;이태연
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.80-87
    • /
    • 2003
  • Air partial pressure ratio and inlet air mass flow are influenced by water vapor and gaseous fuel in mixture on Compressed Natural Gas (CNG) engines. In this paper, the effects of the water vapor and the gaseous fuel that change the air mass flow and the air-fuel ratio are studied. Effective air mass ratio is defined as the air mass flow divided by mixture mass flow, and also it is applied to the estimation of the inlet air mass flow and the air-fuel ratio. The presence of the gaseous fuel and the water vapor in the mixture reduces the air partial pressure and the effective air mass ratio of the CNG engines. The experimental results for the CNG engine show that estimation of the air-fuel ratio based upon the effective air mass ratio is more accurate than that of a normal mode.