• Title/Summary/Keyword: Air/fuel control

Search Result 477, Processing Time 0.024 seconds

Robust Nonlinear Control of Air-to-Fuel Ratio in Spark Ignition Engines

  • Myoungho Sunwoo;Paljoo Yoon;Park, Seungbum;Lee, Wootaik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.699-708
    • /
    • 2001
  • This paper presents a new approach to the AFR (Air-to-Fuel Ratio) control problem, which is based on the wide-band oxygen sensor output. The dedicated nonlinear controller is based on the feedback lineaization technique. It is well known that the feedback linearizing control technique requires an exact model of the plant for the cancellation of plant nonlinearities. A sliding mode control scheme is applied which can effectively compensate the modeling uncertainties. The measurement time delay of an oxygen sensor limits the gain of the feedback controller. Hence, time delay compensation procedure is necessary for the improvement of control performance. The Smith predictor is adopted to compensate the effects of time delay. The simulation and experimental results show that the proposed controllers can effectively reduce the transient peaks of AFR in spite of fast tip-in and tip-out maneuvers of the throttle.

  • PDF

An Experimental Study of Petroleum Cokes Air Staged Burner (공기다단 적용 석유코크스 연료 전용 연소기에 대한 실험적 연구)

  • Kwon, Minjun;Lee, Changyeop;Kim, Sewon
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.40-45
    • /
    • 2015
  • This study is aimed to study combustion characteristics of low $NO_X$ burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and relatively low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. The petroleum cokes burner is operated at fuel rich condition, and overfire air are supplied to achieve fuel lean condition. The low $NO_X$ burner is designed to control fuel and air mixing to achieve air staged combustion, in addition secondary and tertiary air are supplied through swirler. Air distribution ratio of triple staged air are optimized experimentally. The result showed that $NO_X$ concentration is lowest when overfire air is used, and the burner function at a fuel rich condition.

Air-Fuel Ratio Control Characteristics of an LPG Engine at Idle (LPG 엔진의 공회전 영역에서 공연비 제어 특성)

  • 심한섭
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.30-35
    • /
    • 1999
  • Since LPG has a higher octane number and a lower maximum combustion temperature than gasoline it is getting more popular for reducing emissions from the vehicle This paper when an LPG engine works in the range of idle analyzed the operating range preciously an provides reducing method of emissions for the LPG engine. An electronic control unit(ECU) for the LPG engine using a feedback mixer is presented. The ECU is built by using a microcontroller MC68HC05. A PI-controller is imple-mented in the ECU in order to handle to handle Air/Fuel ration control. The experimental results exhibit that the required engine performance are satisfied at idle.

  • PDF

A Study on Forced Aspirating Air Supplying Module for Micro Fuel Cell (마이크로 연료전지용 강제 호흡형 공기 공급 모듈에 관한 연구)

  • Hwang, Jun-Young;Yun, Hyo-Jin;Lee, Sang-Ho;Kang, Heui-Seok;Kang, Kyun-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.49-52
    • /
    • 2008
  • The present study conducts a series of experiments to develop a novel air supplying module for a micro fuel cell using piezoelectric linear actuator. An intermittently and operating air breathing module with reciprocating motion of the linear actuator has been suggested in the present study. A test bench for a micro fuel cell system has been constructed to estimate performance of the active fuel cell system using the air supplying module. With the stroke and operating duty as main control parameters, the optimal operating method of the air supplying module has been discussed.

  • PDF

Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas (배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발)

  • EUNJU SHIN;YOUNG BAE KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

Measurements of Mixture Strength Using Spark Plug (스파크 플러그를 이용한 혼합기 농도 측정)

  • 조상현;임명택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • Ion current in an S.I engine cylinder is measured with the spark plug as a probe. The peak values are confirmed to show a fair correlation with local air-fuel ration and engine speed which implies that the ion current measured at the spark plug may provide a signal for the local mixture strength which is the key parameter in precise fuel control for future engines especially of gasoline direct-injected lean burn engines.

  • PDF

Effect of Air-fuel Ratio on Combustion and Emission Characteristics in a Spark Ignition Engine Fueled with Bio-ethanol (공연비 변화가 바이오에탄올 연료 스파크 점화기관의 연소 및 배출물 특성에 미치는 영향)

  • Kim, Dae-Sung;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this paper is to investigate the effect of air-fuel ratio on the combustion and emissions characteristics of spark ignition (SI) gasoline engine fueled with bio-ethanol. A 1.6L SI engine with 4 cylinders was tested on EC dynamometer. In addition, lambda sensor and lambda meter were connected with universal ECU to control the lambda value which is varied from 0.7 to 1.3. The engine performance and combustion characteristics of bio-ethanol fuel were compared to those obtained by pure gasoline. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen ($NO_X$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque and cylinder pressure of bio-ethanol fuel were slightly higher than those of gasoline fuel. Brake specific fuel consumption (BSFC) of bio-ethanol was increased while brake specific energy consumption (BSEC) was decreased. The exhaust emissions of bio-ethanol fuel were lower than those of gasoline fuel under overall experimental conditions. However, the specific emission characteristics of the engine with bio-ethanol fuel were influenced by air-fuel ratio.

A Study on the Spray and Combustion Characteristics of Gasoline Direct Injector (가솔린 직분식 인젝터의 분무 및 연소특성에 관한 연구)

  • 신민규;박종호;유철호;이내현;최규훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.114-122
    • /
    • 1997
  • Nowadays, gasoline direct injection engines are being commercialized by virtue of improvement in control technology of spray, flow, air fuel ratio. The stratified charge type has the advantage of improving lean limit. The homogeneous type has the advantage of reducing engine-out hydrocabon emissions in the first 30 seconds after a cold start, in addition, improving transient air fuel ratio control. The vaporization and mixing if injected fuel with air has to e completed in a short time and the fuel film in cylinder and on piston has to be minimized. So, the flow and injection should be well controlled. This paper surveyed the spray characteristics of gasoline direct injection by using laser equipment and the combustion characteristics of the single cylinder engine using homogeneousas-mixture type gasoline direct injection.

  • PDF