• Title/Summary/Keyword: Air/fuel control

Search Result 477, Processing Time 0.031 seconds

An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics in the Rapid Compression Machine (RCM을 이용한 디젤 분무거동 및 자발화 특성에 관한 연구)

  • Kang, P.J.;Kim, H.M.;Kim, Y.M.;Kim, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.447-452
    • /
    • 2000
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community. In order to understand the detailed diesel flame field involving the complex Physical Processes, It Is quite desirable to study diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation flame stabilization and pollutant formation. In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection Pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes. In terms of the macroscopic spray combustion characteristics it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle. With increasing the cylinder pressure there is a tendency that the shape of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force. Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

An Experimental Study on the Ignition Probability and Combustion Flame Characteristics of Spark-Ignited Direct-Injection CNG (스파크점화직분식 CNG의 점화성 및 연소화염 특성에 대한 연구)

  • Hwang, Seongill;Chung, Sungsik;Yeom, Jeongkuk;Jeon, Byongyeul;Lee, Jinhyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2016
  • For the SI engines, at only full load, the pumping loss has a negligible effect, while at part load conditions, the pumping loss increases. To avoid the pumping loss, the spark-ignited engines are designed to inject gasoline directly into the combustion chamber. In the spark-ignited direct-injection engines, ignition probability is important for successful combustion and the flame propagation characteristics are also different from that of pre-mixed combustion. In this paper, a visualization experiment system is designed to study the ignition probability and combustion flame characteristics of spark-ignited direct-injection CNG fuel. The visualization system is composed of a combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. It is found that ambient pressure, ambient temperature and ambient air flow velocity are important parameters which affect the ignition probability of CNG-air mixture and flame propagation characteristics and the injected CNG fuel can be ignited directly by a spark-plug under proper ambient conditions. For all cases of successful ignition, the flame propagation images were digitally recorded with an intensified CCD camera and the flame propagation characteristics were analyzed.

A Study on Ignition Probability and Combustion Characteristics of Low Pressure Direct Injection LPG according to a Function of Ambient Condition (분위기 조건 변화에 따른 저압 직접분사식 LPG의 점화성 및 연소특성 연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Yeom, Jeong-Kuk;Jeon, Byong-Yeul
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.32-42
    • /
    • 2016
  • Under part load condition of spark-ignition engine, pumping loss had great effect on engine efficiency. To reduce pumping loss, the study designed spark-ignited engines to make direct spray of gasoline to combustion chamber. In spark-ignited direct-injection engines, ignition probability is important for successful combustion and flame propagation characteristics are also different from pre-mixed combustion. This study designed a visualization testing device to study ignition probability of spark-ignited direct-injection LPG fuel and combustion flame characteristics. This visualization device consists of combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. Ambient pressure, ambient temperature and ambient air flow velocity are important parameters on ignition probability of LPG-air mixture and flame propagation characteristics, and the study also found that sprayed LPG fuel can be directly ignited by spark-plug under proper ambient conditions. To all successful cases of ignition, the study recorded flame propagation image in digital method through ICCD camera and its flame propagation characteristics were analyzed.

Analysis of Regional and Inter-annual Changes of Air Pollutants Emissions in China (중국 대기오염물질 배출의 시공간적 변화 분석)

  • Woo, Jung-Hun;Bu, Chanjong;Kim, Jinsu;Ghim, Young Sung;Kim, Younha
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.87-100
    • /
    • 2018
  • Fast economic growth and urbanization of China have been causing air pollution not only over its domestic but transboundary atmosphere. Recent high fine particle pollution episodes in China made the government move toward more stringent air pollution control policies - which are mostly fuel switching and emissions control. In this research, we tried to understand characteristics of Chinese emissions and their change by analyzing its emissions inventory by year, sector, and region. From the inter-comparison of existing bottom-up emission inventories, we found relatively good agreements (<20% difference) for $SO_2$ and $NO_x$, but 30% or more discrepancies for some pollutants. Inter-comparison with top-down $NO_x$ emissions estimates also showed 20~50% differences by year. The regional distribution and inter-annual changes of emissions revealed different stages of energy/fuel mix and policy penetration. Early increase of pollutants emissions in the eastern part of China might give strong influences to the Korean peninsular in early 2000s but, more stringent control in that region would help improving air pollution in Korea in near future.

Ignition of Fuel-rich Propellant Coated with Ignition Support Material in the Ramjet Combustor Condition (램젯 연소실 조건에서 점화보조제가 도포된 Fuel-rich 추진제의 점화)

  • Jung, Woosuk;Baek, Seungkwan;Kim, Youngil;Kwon, Taesoo;Park, Juhyun;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.79-88
    • /
    • 2017
  • Ignition test of the fuel-rich propellant coated with ignition support material in the ramjet combustor condition was conducted. Ignition delay and flame holding was measured. Fuel grain consist of HTPB mixed with AP particle 15 wt.%, Al particle 5 wt.%. To cause the short ignition delay, ignition support consist of $NC/BKNO_3$ and composite propellant was coated to the fuel grain. Ethanol blended $H_2O_2$ gas generator control the temperature, pressure, $O_2$ concentration in the oxidizer gas in the air. Gas is supplied with mass flux of $200kg/m^2s$. Through the test ignition support operated well and ignition delay of 0.6 second and the Flame was sustained.

A Experimental Study on the Electronic Control Hysteresis Phenomenon of Lean Burn in Spark Ignition Engine (스파크 점화 엔진에서 희박연소의 전자제어 히스테리시스 현상에 관한 실험적 연구)

  • 김응채;김판호;서병준;김치원;이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.475-481
    • /
    • 2004
  • Recently it is strongly required on lower fuel consumption. lower exhaust emission, higher engine performance. and social demands in a spark ignition gasoline engine. In this study. the experimental engine used at test. it has been modified the lean burn gasoline engine. and used the programmable engine management system, and connected the controller circuit which is designed for the engine control. At the parametric study of the engine experiment, it has been controlled with fuel injection, ignition timing. swirl mode, equivalence ratio engine dynamometer load and speed as the important factors governing the engine performance adaptively. It has been found the combustion characteristics to overcome the hysteresis phenomena between normal and lean air-fuel mixing ranges. by mean of the look-up table set up the mapping values. at the optimum conditions during the engine operation. As the result, it is found that the strength of the swirl flow with the variation of engine speed and load is effective on combustion characteristics to reduce the bandwidth of the hysteresis regions. The results show that mass fraction burned and heat release rate pattern with crank angle are reduced much rather, and brake specific fuel consumption is also reduced simultaneously.

Start-up and operation of Gasoline Fuel Processor for Isolated Fuel Cell System (독립형 연료전지 시스템을 위한 가솔린 연료프로세스의 시동 및 운전)

  • Ji, Hyunjin;Bae, Joongmyeon
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.76-85
    • /
    • 2016
  • This study introduces the system layout and control strategy necessary to start and operate a fuel processor in a wide range of temperatures where a gasoline was selected as the fuel of fuel processor considering logistic support of Korea Army. The autothermal reformig(ATR) catalyst is heated to light-off temperature by combustion method in the initial stage. In order to ignite the gasoline and air mixture stably, the glow plug is installed after ATR catalyst. When the catalyst is increased to light-off temperature, the reformer is operated from initiation to steady state conditions as follows: Partial oxidation(POX) mode, partial ATR mode, full ATR mode. Finally the start-up and control strategy is validated by the operational test of gasoline fuel processor at low and room temperature. As a result the gasoline fuel processor is able to start-up within 40 min and to produce the reformate gas which has 37 ~ 42 vol.%(dry basis) of $H_2$ and 0.3 vol.% of CO.

A Study on the Development of Stoichiometric Direct Injection Gasoline Engine by Homogeneous Charge (균일 혼합기를 이용한 이론 공연비 직접분사 가솔린 엔진 개발에 관한 실험적 연구)

  • 이내현;유철호;최규훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.32-42
    • /
    • 1998
  • Lean burn gasoline engine is recognized as a promising way to meet better fuel economy. Lean burn engine is classified into port injection and direct injection(DI), DI is more active technique for improving fuel economy with ultra-lean operation, Nowadays, port injected lean burn engine has been produced by many Japan maker. Also, DI engine is also possible for production owing to improvement in control technique of spray, flow air fuel ratio. DI engine uses either homogeneous stoichiometric mixture or stratified mixture by controlling injection timing to be early or late respectively. HM(homogeneous mixture) is worse than SM(stratified mixture) in view of ultra-lean operation in partical load and Nox reducion by using EGR control. But, HM has advanteges in cold starting and emission reduction during transient operation, This paper describes experimental variables and bench test results of HM GDI engine.

  • PDF

A Study on Characteristics of Knocking in Gasoline Engine through ECU Control (ECU 제어를 통한 가솔린 엔진의 노킹 특성에 관한 연구)

  • Yang, Hyun-Soo;Lim, Ju-Hun;Chun, Dong-Jun
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.109-115
    • /
    • 2008
  • A burning principle in gasoline engine is the one of being burned, by which a mixer in air and gasoline enters a combustion chamber and causes a spark in the proper timing. This is formed, by which ECU controls the fuel-injection volume and the fuel-injection timing, and determines the performance of engine. The purpose of this study is to test the characteristics on knocking in gasoline engine with the knocking-sensor equipment and to research into the characteristics in knocking while directly controling the optimal igniting timing and the fuel-injection timing through engine ECU. Given controlling ECU by grasping the characteristics in knocking, which becomes the most problem in the engine tuning market, the tuning in a true sense will be formed in gasoline engine.

A Study on the Mixture Formation and Combustion Characteristics in Lean Burn Engine (희박연소기관의 혼합기형성 및 연소특성에 관한 연구)

  • 이창식;서영호;조행묵;김현정
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.80-86
    • /
    • 1996
  • In order to decrease fuel comsumption rate and emissions, lean burn engine which has equipped swirl control valve, is investigated experimentally on the test bench. Single cylinder engine was used to test the combustion and emission performance with 4 kinds of swirl valve. Decrease in the carbon monoxide, hyerocarbon and specific fuel consumption was shown at the lean condition, which means that a good choice of swirl valve on the given intake port geometry can be used to increase the combustion efficiency and lean limit.

  • PDF