• Title/Summary/Keyword: Agrobacterium-mediated Transformation

Search Result 345, Processing Time 0.029 seconds

Effect of Sodium Hydrosulfite Solution on Agrobacterium-Mediated Chinese Cabbage Transformation and Transient Expression

  • Park Hee-Sung;Shin Dong-Il
    • Journal of Plant Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.219-223
    • /
    • 2005
  • We investigated chemical-wounding effect on Agrobacterium-mediated Chinese cabbage transformation via vacuum infiltration. Pre-germinated or germinating Chinese cabbage seeds were infiltrated with Agrobacterium tumefaciens LBA4404 cells carrying either GUS gene (pBI121) or hepatitis B virus surface antigen DNA (pBIHBsAg). Prior to agroinfiltration process, the seeds were soaked in sodium hydrosulfite (SHS) solution or just in sterile water as a control. Comparative transformation efficiency was determined by both of histochemistry and ELISA. We could demonstrate that SHS solution treatment especially to 1-day or 2-days old germinating seeds efficiently improved transformation process, and therefore, transient expression level. This strongly indicated that Agrobacterium infection could be facilitated indeed by SHS-causing wounds on Chinese cabbage seeds.

Agrobacterium-mediated Transformation of the Winter Mushroom, Flammulina velutipes

  • Cho, Jung-Hee;Lee, Seung-Eun;Chang, Who-Bong;Cha, Jae-Soon
    • Mycobiology
    • /
    • v.34 no.2
    • /
    • pp.104-107
    • /
    • 2006
  • Flammulina velutipes was transformed efficiently by Agrobacterium-mediated transformation system. The transformation frequency was about 16% with the gill tissues of the fungal fruiting body. Southern hybridization and genetic analysis suggest that the introduced DNA was inserted onto different locations of the fungal genome, and inherited stably to the next generation via basidiospores. Transformation or gene tagging with Agrobacterium T-DNA based vector should be useful for wide ranges of genetic or molecular biological studies of the mushroom.

An Efficient and Stable Method for the Transformation of Heterogeneous Genes into Cephalosporium acremonium Mediated by Agrobacterium tumefaciens

  • XU WEI;ZHU CHUNBAO;ZHU BAOQUAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.683-688
    • /
    • 2005
  • A transformation system mediated by Agrobacterium tumefaciens is routinely used for the genetic engineering of plants. Here, we report an efficient and stable method for transformation of heterogeneous genes into an industrial Cephalosporium acremonium by using a similar transformation system established in plants. Both the phleomycin-resistant gene and vgb gene were used as screening markers to confirm the success of transformation by either Southern hybridization or PCR amplification. It was found that acetosyringone (AS) was necessary only for protoplast transformation and the heterogeneous genes transferred were integrated into the genome of C. acremonium. The transformation efficiency obtained with this system was much higher than the conventional techniques used for transformation of C. acremonium.

Physical wounding-assisted Agrobacterium-mediated transformation of juvenile cotyledons of a biodiesel-producing plant, Jatropha curcas L.

  • Khemkladngoen, Naruemon;Cartagena, Joyce A.;Fukui, Kiichi
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.235-243
    • /
    • 2011
  • The non-edible plant Jatropha curcas L. is one of the most promising feedstock for sustainable biodiesel production as it is not a source of edible vegetable oils, produces high amounts of oil (approx. 30-60% in dry seeds) and does not require high-cost maintenance. However, as with other undomesticated crops, the cultivation of J. curcas presents several drawbacks, such as low productivity and susceptibility to pests. Hence, varietal improvement by genetic engineering is essential if J. curcas is to become a viable alternative source of biodiesel. There is to date no well-established and efficient transformation system for J. curcas. In this study, we tested various physical wounding treatments, such as sonication and sand-vortexing, with the aim of developing an efficient Agrobacterium-mediated transformation for J. curcas. The highest stable transformation rate (53%) was achieved when explants were subjected to 1 min of sonication followed by 9 min of shaking in Agrobacterium suspension. The transformation frequency achieved using this protocol is the highest yet reported for J. curcas.

Development of an Agrobacterium-mediated Transient Expression System for Intact Leaves of Chili Pepper (Agrobacterium을 이용한 고추의 Transient Expression 시스템)

  • Seong, Eun-Soo;Joung, Young-Hee;Choi, Doil
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.185-190
    • /
    • 2004
  • We established a transient gene expression system in chili pepper leaves based on Agrobacterium-mediated transformation of GUS gene. For the best GUS transient expression, two step culture system was adopted. When the Agrobacterium tumefaciens cell density of pre-culture was $A_{600nm}$ 0.3, the cells were harvested and diluted to $A_{600nm}$ 0.8 with virulence induction medium after cell harvested. The addition of acetosyringone (200 $\mu$M) in virulence induction step was a key factor for successful transient expression. Additionally, Younger leaves showed more effective transient expression than older leaves. Temporally, the strongest intensity of GUS expression was detected at 2 days after infiltration. These results demonstrate that Agrobacterium-mediated transient expression can be used for a simple in vivo assays of plant promoters, transcription factors and furthermore provide efficient protocol for chili pepper transformation.

Herbicide-resistant Transgenic Mongolian Bentgrass (Agrostis mongolica Roshev.) obtained by Agrobacterium-mediated Transformation

  • Vanjildorj, Enkhchimeg;Bae, Tae-Woong;Song, In-Ja;Kim, Kyung-Moon;Lim, Yong-Pyo;Lee, Hyo-Yeon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.128-135
    • /
    • 2008
  • Herbicide resistance is the most common trait being tested and thus herbicide?resistant genetically modified plants are now the most widely cultivated worldwide. Here we developed herbicide?resistant transgenic Agrostis mongolica Roshev. by employing an efficient Agrobacterium?mediated transformation procedure with 25.2% of transformation efficiency. The identification and employment of regenerable and reproducible type of callus was one of the most critical factors to ensure success in this study. PCR analysis confirmed that the bar transgene was integrated into the genome of transgenic plants. The expression of 35S?bar gene was confirmed by Northern blot analysis. The transgenic plants showed complete resistance to herbicide, indicating that the bar gene is functional in transgenic plants.

Effect of Cell Wall-Wounding Reagents on Agrobacterium-mediated Barley Seedling Transformation (Agrobacterium 이용 보리묘 형질전환에 대한 세포벽 상해물질의 효과)

  • Choi, Jang-Won;Park, Hee-Sung
    • Journal of agriculture & life science
    • /
    • v.44 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • Barley, a monocotyledonous plant, is relatively recalcitrant to the process of Agrobacterium-mediated genetic transformation. In this study, seedlings of six barley cultivars (Keunal-1-Ho, Saessal, Ol, Saechalssal, Seodunchal and Pungsanchalssal) were injured using alkali, oxidizing or reducing agents. They were then transformed using Agrobacterium via vacuum infiltration for the analysis of comparative GUS gene expression. It was determined that chemical injuries causing a slight growth retardation could overall enhance the GUS transformation rate. Hydrogen peroxide was determined to be the most effective.

Agrobacterium-Mediated Transformation of Flammulina velutipes with NaOH Treatment (NaOH처리에 의한 Agrobacterium이용 팽이균사체 형질전환)

  • Shin, Dong-Il;Park, Hee-Sung
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.235-238
    • /
    • 2011
  • Agrobacterium harboring vector pCHBs with hygromycin phosphotransferase(hph) and hepatitis B virus surface antigen(HBsAg)gene was transformed into the mycelial culture of Flammulina velutipes. In particular, mild NaOH solution was treated to the mycelia before Agrobacterium infection step. This was purposed to generate putative surface wounds in the mycelial cell walls. The results showed that hygromycin-resistant($hyg^r$) mycelia could be obtained only from NaOH-treated mycelia but not from intact mycelia. The integration of $hyg^r$ gene in fungal genome was confirmed by PCR. In addition, a single transgene integration and heterologous protein expression in F. velutipes could be verified by Southern blot hybridization and western blot analysis, respectively. This study demonstrated an efficient tool for the Agrobacterium-mediated transformation of F. velutipes mycelia.

GFP expression in the microspore-derived early embryo through co-culturing with Agrobacterium (Agrobacterium 공동배양을 이용한 고추 소포자 유래 초기 배의 GFP 발현)

  • Jung, Min;In, Dong-Su;Kim, Bong-Kyu;Jang, In-Chang;Park, Eun-Joon;Kim, Moon-Za;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.109-114
    • /
    • 2008
  • The aim of this research is to establish the conditions for Agrobacterium-mediated genetic transformation using microspore. The embryo induction from the microspore was examined under several Kanamycin concentration in media, and the induction rate decreased about 4, 8, 10 times when the Kanamycin concentration increased 10, 50, 100 mg/L, respectively. This indicates that the transformation rate would be much lower if the Kanamycin was used for selection marker. In order to apply the GFP gene as a reporter gene for Agrobacterium-mediated genetic transformation, GFP expression from the microspore-mediated embryos was observed using GFP filter under microscope. The GFP expression occurred when the microspore cultured toward the embryo development for 12, 24 and 48 days. The microspore formed a cluster by microspore division from 12 days culture and continuously became a bigger mass. We obtained a total of 8 GFP-expressing embryos suggesting that the transformation of microspore occurred. However, those young embryos were not fully developed. Further study pertinent to culture conditions is required to fulfill the Agrobacterium-mediated genetic transformation using microspore.

Transformation of a Filamentous Fungus Cryphonectria parasitica Using Agrobacterium tumefaciens

  • Park, Seung-Moon;Kim, Dae-Hyuk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.217-222
    • /
    • 2004
  • As Agrobacterium tumefaciens, which has long been used to transform plants, is known to transfer T-DNA to budding yeast, Saccharomyces cerevisiae, a variety of fungi were subjected to the A. tumefaciens-mediated transformation to improve their transformation frequency and feasibility. The A. tumefaciens-mediated transformation of chestnut blight fungus, Cryphonectria parasitica, is performed in this study as the first example of transformation of a hardwood fungal pathogen. The transfer of the binary vector pBIN9-Hg, containing the bacterial hygromycin B phosphotransferase gene under the control of the Aspergillus nidulans trpC promoter and terminator, as a selectable marker, led to the selection of more than 1,000 stable, hygromycin B-resistant transformants per 1${\times}$10$\^$6/ conidia of C. parasitica. The putative transformants appeared to be mitotically stable. The transformation efficiency appears to depend on the bacterial strain, age of the bacteria cell culture and ratio of fungal spores to bacterial cells. PCR and Southern blot analysis indicated that the marker gene was inserted at different chromosomal sites. Moreover, three transformants out of ten showed more than two hybridizing bands, suggesting more than two copies of the inserted marker gene are not uncommon.