• Title/Summary/Keyword: Agrobacterium-mediated

Search Result 378, Processing Time 0.027 seconds

Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation

  • Kwon, Tackmin
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.705-713
    • /
    • 2016
  • The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.

Agrobacterium tumefaciens-Mediated Genetic Transformation: Mechanism and Factors

  • Kumar, Nitish;Vijayanand, K.G.;Reddy, Myppala P.;Singh, Amritpal S.;Naraynan, Subhash
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.3
    • /
    • pp.195-204
    • /
    • 2009
  • Agrobacterium-mediated genetic transformation has been widely used for the production of genetically modified transgenic plants to obtain specific desired traits. Most of the molecular mechanisms that underlie the transformation steps have been well elucidated over the years. However, a few steps, such as nuclear targeting, T-DNA integration, and Agrobacterium-plant proteins involved remain largely obscure and are still under extensive studies. This review describes the major steps involved in the molecular mechanism of Agrobacterium-mediated transformation and provides insight in the recent developments in studies on the Agrobacterium-mediated genetic transformation system. Some factors affecting the transformation efficiency are also briefly discussed.

  • PDF

Development of an Agrobacterium-mediated Transient Expression System for Intact Leaves of Chili Pepper (Agrobacterium을 이용한 고추의 Transient Expression 시스템)

  • Seong, Eun-Soo;Joung, Young-Hee;Choi, Doil
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.185-190
    • /
    • 2004
  • We established a transient gene expression system in chili pepper leaves based on Agrobacterium-mediated transformation of GUS gene. For the best GUS transient expression, two step culture system was adopted. When the Agrobacterium tumefaciens cell density of pre-culture was $A_{600nm}$ 0.3, the cells were harvested and diluted to $A_{600nm}$ 0.8 with virulence induction medium after cell harvested. The addition of acetosyringone (200 $\mu$M) in virulence induction step was a key factor for successful transient expression. Additionally, Younger leaves showed more effective transient expression than older leaves. Temporally, the strongest intensity of GUS expression was detected at 2 days after infiltration. These results demonstrate that Agrobacterium-mediated transient expression can be used for a simple in vivo assays of plant promoters, transcription factors and furthermore provide efficient protocol for chili pepper transformation.

Efficient Agrobacterium-Mediated Transformation of Alfalfa Using Secondary Somatic Embryogenic Callus (알팔파의 이차 캘러스를 이용한 Agrobacterium에 의한 효율적인 형질 전환)

  • 이병현;원성혜;이효신;김기용;조진기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • An efficient method for Agrobacterium-mediated transformation of forage crop alfalfa (Medicago sativa L.) was established using secondary somatic embryogenic calli. Agrobacterium tumefaciens strain EHAlOl and a binary vector pIG121-Hm which has selection markers for kanamycin and hygromycin have been shown to be an efticient materials for alfalfa transformation. The secondary somatic embryogenic calli originated from hypocotyl explants of alfalfa were efficient infection materials for Agrobacterium EHAlOl and normally germinated into plantlets. The introduced gene (GUS) was constitutively expressed in all tissues of transgenic alfalfa with different expression levels. These results indicate that the use of pIG121-Hm vector, Agrobacterium EHAlOl and improved culture system of callus facilitate the transformation of alfalfa. (Key words : Agrobacterium, Alfalfa, Gene transfer, Transformation)

  • PDF

Physical Wounding for the Enhancement of Agrobacterium-Mediated Transformation of Flammulina velutipes Mycelium (물리적 상해를 통한 Agrobacterium 이용 팽이균사체의 형질전환효율 증대)

  • Duong, Van Thanh;Shin, Dong-Il;Park, Hee-Sung
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.141-146
    • /
    • 2010
  • In this study, Agrobacterium-mediated transformation was tested to the mycelium culture of Flamulina velutipes which is very popular as an edible mushroom in Korea. Particularly, aluminum oxide particles were used to generate wounds in F. velutipes mycelia via vigorous shaking prior to agro-infiltration. The result showed that transformants resistant to hygromycin could be obtained only from the mycelia with physical wounds. Gene transfer was verified by genomic DNA PCR. This study suggested a convenient tool to improve Agrobacterium-mediated transformation of F. velutipes.

Identification of Plant Factors Involving in Agrobacterium-mediated Plant Transformation

  • Nam, Jaesung
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.387-393
    • /
    • 2000
  • The process by which Agrobacterium tumefaciens genetically transforms plants involves a complex series of reactions communicated between the pathogen and the plants. To identify plant factors involved in agrobacterium-mediated plant transformation, a large number of T-DNA inserted Arabidopsis thaliana mutant lines were investigated for susceptibility to Agrobacterium infection by using an in vitro root inoculation assay. Based on the phenotype of tumorigenesis, twelve T-DNA inserted Arabidopsis mutants(rat) that were resistant to Agrobacterium transformation were found. Three mutants, rat1, rat3, and rat4 were characterized in detail. They showed low transient GUS activity and very low stable transformation efficiency compared to the wild-type plant. The resistance phenotype of rat1 and rats resulted from decreased attachment of Agrobacterium tumefaciens to inoculated root explants. They may be deficient in plant actors that are necessary for bacterial attachment to plant cells. The disrupted genes in rat1, rat3, and rat4 mutants were coding a arabinogalactan protein, a likely cell wall protein and a cellulose synthase-like protein, respectively.

  • PDF

Efficient Expression System of High Value Proteins, hGM-CSF and hEGF, using Agrobacterium-mediated Chlorella Transformation (아그로박테리움 매개 클로렐라 형질전환을 이용하여 유용 단백질인 hGM-CSF와 hEGF의 효율적인 발현 시스템)

  • Yu Jeong Jeong;Mi ­ Jung Park;Woo ­ Jeong Lee;Sung Chun Kim
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.26-35
    • /
    • 2024
  • Chlorella has various biotechnological applications, including in the biomedical and pharmaceutical industries, because of its advantages, including rich nutrients, fast growth rate, easy cultivation, and high biomass. We used the Agrobacterium-mediated transformation method to express human GM-CSF and EGF proteins, which are widely used in regenerative medicine, cosmetics, and pharmaceutical materials in Chlorella. The codon-optimized hGM-CSF and hEGF genes were cloned into plant binary vectors and transformed into Chlorella vulgaris using the Agrobacterium-mediated coculture transformation method. After transformation, genomic DNA PCR was performed for each C. vulgaris line that was stably subcultured on an antibiotic-resistant solid medium to confirm the insertion of hGM-CSF and hEGF into the chromosome. Furthermore, PT-PCR and protein expression of hGM-CSF and hEGF in each transformed C. vulgaris were significantly increased compared to the untransformed Chlorella. This study suggests that high-value proteins, including hGM-CSF and hEGF, which are foreign genes of C. vulgaris, can be stably expressed through the Agrobacterium-mediated Chlorella transformation system.

Agrobacterium-mediated genetic transformation of Trichoderma sp. KACC 40541 (Agrobacterium을 이용한 Trichoderma sp. KACC 40541의 형질전환)

  • Choi, Jang-Won;Park, Hee-Sung
    • Journal of agriculture & life science
    • /
    • v.45 no.1
    • /
    • pp.119-124
    • /
    • 2011
  • Trichoderma spp. are very important as being a major source for the industrial production of various secreting enzymes in the field of white biotechnology. In this work, Agrobacterium-mediated transformation (AMT) was studied using Trichoderma sp. KACC 40541 which has high activities of amylase, pectinase, cellobiohydrolase and xylanase. In principal, optimized NaOH treatment, prior to Agrobacterium infection, to the mycelium was determined to be very effective for AMT.

Agrobacterium-Mediated Transformation of Flammulina velutipes with NaOH Treatment (NaOH처리에 의한 Agrobacterium이용 팽이균사체 형질전환)

  • Shin, Dong-Il;Park, Hee-Sung
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.235-238
    • /
    • 2011
  • Agrobacterium harboring vector pCHBs with hygromycin phosphotransferase(hph) and hepatitis B virus surface antigen(HBsAg)gene was transformed into the mycelial culture of Flammulina velutipes. In particular, mild NaOH solution was treated to the mycelia before Agrobacterium infection step. This was purposed to generate putative surface wounds in the mycelial cell walls. The results showed that hygromycin-resistant($hyg^r$) mycelia could be obtained only from NaOH-treated mycelia but not from intact mycelia. The integration of $hyg^r$ gene in fungal genome was confirmed by PCR. In addition, a single transgene integration and heterologous protein expression in F. velutipes could be verified by Southern blot hybridization and western blot analysis, respectively. This study demonstrated an efficient tool for the Agrobacterium-mediated transformation of F. velutipes mycelia.

Organogenesis and Production of Some Transgenic Legume Plants by Agrobacterium tumefaciens-mediated Herbicide Resistance Gene Transformation

  • Kantayos, Vipada;Lee, Hyo-Yeon;Bae, Chang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.52-52
    • /
    • 2018
  • Development of herbicide resistant transgenic legume plants through Agrobacterium-mediated transformation has been worked in many previous studied. Plant regeneration after infection is the important step to obtain successful transgenic plants. Many attempts try to find the optimum media condition for plant regeneration after infection. However, the transformation efficiency of legume plants is still low. In this study, regeneration of some Korean legume species including two soybean cultivars (Dawon and Pungsan) and pea have been done with organogenesis which is used various kind of explants such as cotyledonary-nodes in soybean and bud-containing tissue in pea. We developed the optimum media condition for plant regeneration regulators under Agrobacterium-mediated transformation using different kind and various concentration of plant growth. As the results, B5 medium containing 2 mg/L of 6-benzylaminopurine was selected in this study for the optimum plant regeneration media. The segments were inoculated with Agrobacterium suspension harbored an IG2 vector containing bar gene which confers resistance to phosphinotricin (PPT) in 3, 5 and 7 days. The transformation efficiency was achieved in Dawon 3.03 % and pea 1.46 % with co-cultivation period of 7 days which is showed a high number of GUS positive expression period.

  • PDF