Agrobacterium-mediated genetic transformation of Trichoderma sp. KACC 40541

Agrobacterium을 이용한 Trichoderma sp. KACC 40541의 형질전환

  • 최장원 (대구대학교 바이오산업학과) ;
  • 박희성 (대구가톨릭대학교 생명공학과)
  • Received : 2011.01.03
  • Accepted : 2011.02.22
  • Published : 2011.02.28

Abstract

Trichoderma spp. are very important as being a major source for the industrial production of various secreting enzymes in the field of white biotechnology. In this work, Agrobacterium-mediated transformation (AMT) was studied using Trichoderma sp. KACC 40541 which has high activities of amylase, pectinase, cellobiohydrolase and xylanase. In principal, optimized NaOH treatment, prior to Agrobacterium infection, to the mycelium was determined to be very effective for AMT.

Trichoderma spp.는 white biotechnology에서 이용되는 대표적인 미생물로서 이들이 강력하게 분비 생산하는 효소들은 산업적으로 매우 중요하다. 본 연구에서는 amylase, pectinase, cellobiohydrolase 및 xylanase 분비활성이 높은 것으로 밝혀진 Trichoderma sp. KACC 40541균주에 대한 Agrobacterium이용 형질전환을 수행하였으며 균주개량을 위한 효율적인 유전자도입 방법을 제시하였다. 특히 형질전환을 위하여서는 균사체에 대한 적정 농도의 NaOH처리가 매우 효과적임을 보여주었다.

Keywords

References

  1. Bechtold, N., and G. Pelletier. 1998. In planta Agrobacterium-mediated gene transfer of adult Arabidopsis thaliana plants by vacuum infiltration. Meth. Mol. Biol. 82: 259-266.
  2. Bouws, H., A. Wattenberg, and H. Zorn. 2008. Fungal secretomes-nature's toolbox for white biotechnology. Appl. Microbiol. Biotechnol. 80: 381-388. https://doi.org/10.1007/s00253-008-1572-5
  3. Cheng, M., J. E. Fry, S. Pang, I. Zhou, C. Hironaka, D. R. I. Duncan, T. W. L. Conner, and Y. Wang. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens, Plant Physiol. 115: 971-980.
  4. Cheng, M., T. Hu, J. L. Layton, C. N. Liu, and J. E. Fry. 2003. Desiccation of plant tissues post- Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell. Dev. Biol. Plant 39: 595-604l. https://doi.org/10.1079/IVP2003471
  5. Deane, E. E., J. M. Whipps, J. M. Lynch, and J. F. Peberdy. 1999. Transformation of Trichoderma reesei with a constitutively expressed heterologous fungal chitinase gene. Enz. Microbial Technol. 24: 419-424. https://doi.org/10.1016/S0141-0229(98)00155-0
  6. Enriquez-Obregon, G. A., R. I. Vazquez-Padron, D. L. Prieto-Samsonov, G. A. de la Riva, and G. Selman-Housein. 1998. Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacteriummediated transformation. Planta 205: 20-27.
  7. Flores Solis, J. L., P. Mlejnek, K. Studena, and S. Prochazka. 2003. Application of sonication-assisted Agrobacterium-mediated transformation in Chenopodium rubrum. L. Plant Soil Environ. 49: 255-260.
  8. Hoyos-Carvajal, L., S. Orduz, and J. Bissett. 2009. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biol. Cont. 51: 409-416. https://doi.org/10.1016/j.biocontrol.2009.07.018
  9. John, R. P., R. D. Tyagi, D. Prevost, S. K. Brar, S. Pouleur, and R. Y. Surampalli. 2010. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protect. 29: 1452-1459. https://doi.org/10.1016/j.cropro.2010.08.004
  10. Kim, S., D. I. Shin, and H. S. Park. 2007. Transient $\beta$-glucuronidase expression in lily (Lilium longiflorum L.) pollen via wounding-assisted Agrobacterium-mediated transformation. Biotech. Lett. 29: 965-969. https://doi.org/10.1007/s10529-007-9326-5
  11. Manczinger, L., O. Komonyi, Z. Antal, and L. Ferenczy. 1997. A method for high-frequency transformation of Trichoderma viride. J. Microbiol. Meth. 29: 207-210. https://doi.org/10.1016/S0167-7012(97)00026-2
  12. Meyer, V. 2008. Genetic engineering of filamentous fungi - progress, obstacles and future trends. Biotech. Adv. 26: 177-185. https://doi.org/10.1016/j.biotechadv.2007.12.001
  13. Olhoft, P. M., and D. A. Somers. 2001. L-cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep. 20: 706-711. https://doi.org/10.1007/s002990100379
  14. Pan, S. Q., T. Charles, S. Jin, Z. L. Wu, and E. W. Nester. 1993. Preformed dimeric state of the sensor protein VirA is involved in plant-Agrobacterium signal transduction Proc. Natl. Acad. Sci. USA 90:9939-9943. https://doi.org/10.1073/pnas.90.21.9939
  15. Sharma, K. K., and R. C. Kuhad. 2010. Genetic transformation of lignin degrading fungi facilitated by Agrobacterium tumefaciens. BMC Biotechnol. 10: 67-74. https://doi.org/10.1186/1472-6750-10-67
  16. Singh, N., and H. S. Chawla. 1999. Use of silicon carbide fibers for Agrobacterium- mediated transformation in wheat. Curr. Sci. 76: 1483-1485.
  17. Te'o, V. S. J., P. L. Bergquist, and K. M. H. Nevalainen. 2002. Biolistic transformation of Trichoderma reesei using the Bio-Rad seven barrels Hepta Adaptor system. J. Microbiol. Meth. 51: 393-399. https://doi.org/10.1016/S0167-7012(02)00126-4
  18. Uze, M., J. Wunn, J. Pounti-Kaelas, I. Potrykus, and C. Sauter. 1997. Plasmolysis of precultured immature embryos improves Agrobacterium mediated gene transfer to rice (Oryza sativa L.) Plant Sci. 130: 87-95. https://doi.org/10.1016/S0168-9452(97)00211-2
  19. Wang, B., and L. Xia. 2011. High efficient expression of cellobiase gene from Aspergillus niger in the cells of Trichoderma reesei. Bioresource Technol. doi: 10.1016/j.biortech.2010.12.099.