• Title/Summary/Keyword: Agriculture technology

검색결과 7,108건 처리시간 0.033초

Effect of Chinese Cinnamon Powder on the Quality and Storage Properties of Ground Lamb Meat during Refrigerated Storage

  • Hussain, Zubair;Li, Xin;Ijaz, Muawuz;Xiao, Xiong;Hou, Chengli;Zheng, Xiaochun;Ren, Chi;Zhang, Dequan
    • 한국축산식품학회지
    • /
    • 제40권3호
    • /
    • pp.311-322
    • /
    • 2020
  • This study was undertaken to evaluate the impact of Chinese cinnamon powder (w/w), at the levels of 0.5%, 1.5%, and 2.5% and control (without additive) on ground lamb meat quality. The samples were stored at 4℃ and examined for pH, color, lipid oxidation (thiobarbituric acid reactive substances) and total viable counts (TVC). The results demonstrated that pH values were declined with the increase of Chinese cinnamon levels compared to control group. The L* values throughout the storage were significantly higher (p<0.05) in the control group than in other treatment groups, while a* values were decreased with the increase of Chinese cinnamon levels. The addition of Chinese cinnamon powder strongly inhibited (p<0.05) thiobarbituric acid reactive substances (TBARS) and TVC in all treated samples. It can be concluded that Chinese cinnamon powder in lower concentration 0.5% has the ability to maintain the quality of ground lamb in comparison with other treated samples.

DdeI Polymorphism in Coding Region of Goat POU1F1 Gene and Its Association with Production Traits

  • Lan, X.Y.;Pan, C.Y.;Chen, H.;Lei, C.Z.;Hua, L.S.;Yang, X.B.;Qiu, G.Y.;Zhang, R.F.;Lun, Y.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권9호
    • /
    • pp.1342-1348
    • /
    • 2007
  • POU1F1 is a positive regulator for GH, PRL and TSH${\beta}$ and its mutations associate with production traits in ruminant animals. We described a DdeI PCR-RFLP method for detecting a silent allele in the goat POU1F1 gene: TCT (241Ser)>TCG (241Ser). Frequencies of $D_1$ allele varied from 0.600 to 1.000 in Chinese 801 goats. Significant associations of DdeI polymorphism with production traits were found in milk yield (*p<0.05), litter size (*p<0.05) and one-year-old weight (*p<0.05) between different genotypes. Individuals with genotype $D_1D_1$ had a superior performances when compared to those with genotype $D_1D_2$ (*p<0.05). Hence, the POU1F1 gene was suggested to the potential candidate gene for superior milk performance, reproduction trait and weight trait. Genotype $D_1D_1$, characterized by a DdeI PCR-RFLP detection, was recommended to geneticists and breeders as a molecular marker for better performance in the goat industry.

MoJMJD6, a Nuclear Protein, Regulates Conidial Germination and Appressorium Formation at the Early Stage of Pathogenesis in Magnaporthe oryzae

  • Li Zhang;Dong Li;Min Lu;Zechi Wu;Chaotian Liu;Yingying Shi;Mengyu Zhang;Zhangjie Nan;Weixiang Wang
    • The Plant Pathology Journal
    • /
    • 제39권4호
    • /
    • pp.361-373
    • /
    • 2023
  • In plant-pathogen interactions, Magnaporthe oryzae causes blast disease on more than 50 species of 14 monocot plants, including important crops such as rice, millet, and most 15 recently wheat. M. oryzae is a model fungus for studying plant-microbe interaction, and the main source for fungal pathogenesis in the field. Here we report that MoJMJD6 is required for conidium germination and appressorium formation in M. oryzae. We obtained MoJMJD6 mutants (ΔMojmjd6) using a target gene replacement strategy. The MoJMD6 deletion mutants were delayed for conidium germination, glycogen, and lipid droplets utilization and consequently had decreased virulence. In the ΔMojmjd6 null mutants, global histone methyltransferase modifications (H3K4me3, H3K9me3, H3K27me3, and H3K36me2/3) of the genome were unaffected. Taken together, our results indicated that MoJMJD6 function as a nuclear protein which plays an important role in conidium germination and appressorium formation in the M. oryzae. Our work provides insights into MoJMJD6-mediated regulation in the early stage of pathogenesis in plant fungi.

Molybdate Alters Sulfate Assimilation and Induces Oxidative Stress in White Clover (Trifolium repens L.)

  • Zhang, Qian;Lee, Bok-Rye;Park, Sang-Hyun;Jeong, Gi-Ok;Kim, Tae-Hwan
    • 한국초지조사료학회지
    • /
    • 제33권3호
    • /
    • pp.153-158
    • /
    • 2013
  • Molybdenum (Mo) in rhizosphere influences sulfate assimilation as well as a number of other physiological aspects. In this study, the activity of key enzymes in sulfate assimilatory pathways, such as ATP sulfurylase (ATPs), adenosine 5'-phosphosulphate reductase (APR), as well as the responses of reactive oxygen species (ROS), were analyzed to elucidate the metabolic and physiological effects of external Mo supply to detached leaves of Trifolium repens L. Mo supply with a range from 1 mM to 40 mM depressed the activity of ATPs throughout the entire time course. In the leaves exposed to 1 mM Mo, a continuous decrease in the activity of ATPs was confirmed by Native-PAGE. The APR activity was also declined by Mo treatment. The accumulation of $H_2O_2$ and ${O_2}^{{\cdot}-}$ were not significant up to 10 mM Mo, whereas a remarked accumulation was detected under 40 mM Mo supply. The data suggest that an external supply of Mo has an inhibitory effect on sulfate assimilation, and induces oxidative stress only at an extremely high concentration.

Ammonification and NH3 emission in the Soil Amended with Different Animal Manures

  • Wang, Xin-Lei;Zhang, Qian;Park, Sang-Hyun;Lee, Bok-Rye;Kim, Tae-Hwan
    • 한국초지조사료학회지
    • /
    • 제37권1호
    • /
    • pp.56-60
    • /
    • 2017
  • Mineralization is an important biological process for conversion of organic nitrogen (N) to inorganic N which can be used by plants directly. To investigate the effect of different manures on soil mineralization, the soil amended with cattle (CtM), goat (GM), chicken manure (ChM) and pig slurry (PS) were incubated under in vitro condition and ammonium N ($NH_4{^+}-N$), ammonification rate and ammonia emission were determined for eighty-four days. $NH_4{^+}-N$ was the highest in PS-amended soil for the whole experimental period. $NH_4{^+}-N$ in PS-amended soil was gradually decreased until day 84, whereas it was rapidly decreased for the first 14 days and then slightly increased until 84 days in ChM-, CtM- and GM-amended soil. The ammonification rate showed negative value for the first 14 days in all treatments. From day 14, ammonification rate started to increase in CtM- and ChM-amended soil, whereas it was maintained in GM- and PS-amended soil until day 84. The daily ammonia emission was the highest in PS-amended soil ($41mg\;kg^{-1}d^{-1}$), followed by CtM-, ChM-, and GM-amended soil at day 1. It was gradually decreased until day 84 in all treatments. The total $NH_3$ emission was the highest in PS-amended soil with $0.6mg\;kg^{-1}$ for 84 days, while less than $0.1mg\;kg^{-1}$ in three other plots. These results indicate that different manures showed different soil ammonification rate and $NH_3$ emission.