• Title/Summary/Keyword: Agriculture drought

Search Result 275, Processing Time 0.031 seconds

Rice Cultivation and Demographi Development in Korea : 1429-1918 (조선시대(朝鮮時代) 도작농업(稻作農業)의 발전(發展)과 인구증가(人口增加))

  • Lee, Ho Chol
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.201-219
    • /
    • 1989
  • Rice culture in Korea has a long history ranging over two thousand years. In the agriculture economy of pre-mordern Korea, however, its importantce was not as great as generally assumed. In fact, rice culture reached full development only after the 1920s when the Japanese colonial government carried out its drive to increase rice production in the Korea peninsula. It was not until the mid-1930s that rice became the staple in Korean diet. This can be attributed to two factors : (1) a mountainous topography that provides little irrigated fields and (2) a climate characterized by droughts in spring and heavy precipitation in summer. The present paper attempts to answer some of these questions. Specifically it will focus on these : Did the development of rice culture actually result in population growth? What are the salient features of agricultural develdpment and population grow in traditional Korea? Does the case of Korea conform the prevailing generalization about the agriculture in East Asia? I have discussed the development of rice culture and population growth in the Chos$\breve{o}$n dynasty, focusing on the relation between the rapid spread of transplanting and the rapid growth of population from the seventeenth to the nineteenth century. Here are my conclusions. (1) The spread of transplanting and other technological innovationsc contributed to the rapid growth of population in this period. However, we should also note that the impact of rice culture on population growth was rather limited, for rice culture was not the mainstay of agricultural economy in pre-modern Korea. Indeed we should consider the influence of dry field cropsn population growth. Nevertheless, it is obvious that the proliferation of rice culture was a factor crucial to population growth and regional concentration. (2) How should we characterize the spread of rice culture in the whole period? Evidently rice culture spread from less then 20% of cultivated fields in the fifteenth century to about 36% of them in the early twentieth century. Although rice as a single crop outweighed other crops, rice culture was more then counter-balanced by dry field crops as a whole, due to Korea's unique climate and geography. Thus what we have here in not a typical case of competition between rice culture and day field culture. Besides, the spread of rice culture in the seventeenth and eighteenth centuries accomplished by technological innovations that overcame severe springtime drought, rather than extensive irrigation. Althougt irrigarion facilities did proliferate to some extent, this was achieved by local landlords and peasants rather than the state. This fact contradicts the classical thesis that the productivity of rice culture increased through the state management of irrigation and that this in turn determined the type of society. (3) We should further study other aspects of the transition from the stable population and production struture in the fifteenth and sixteenth centuries to the rapid population growth and excessive density of population thereafter. We should note that there were continuing efforts to reclaim the land in order to solve the severe shortage of land. Changes also took place in the agricultural production relations. The increase in land producrivity developed tenancy based on rent in kind, and this in turn increased the independence of tenants from their landlords. There were changes in family relations-such as the shift to primogeniture as an effort to prevent progressive division of property among multiplying offspring. The rapid population growth also produced a great mass of propertyless farm laborers. These changes had much to do with the disintegration of traditional social institutions and political structure toward the end of the Chos$\breve{o}$n dynasty.

  • PDF

Effect of Nitrogen Fertilization and Cutting Management on the Carbohydrate Reserves, Regrowth, and Dry Matter Yeild of Sorghum-Sudangrass Hybrid[Sorghum bicolor(L.)Moench] II. Effect of nitrogen fertilization and cutting height on the dead stubble and carbohydrate reserves in stubble of sorghum-sudangrass hybrid (질소시비수준과 예취관리가 수단그라스계 잡종 [Sarghum Bicolor (L.) Moench]의 저장탄수화물함량, 재생 및 수량에 미치는 영향. II. 질소시비수준과 예취높이가 수단그라스계 잡종의 그루터기 고사와 저장탄수화물함량에 미치는 영향)

  • Seo, Sung;Kim, Dong-Am
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.3 no.2
    • /
    • pp.67-76
    • /
    • 1983
  • This experiment was carried out to investigate the effects of the different nitrogen rates and cutting heights on the dead stubble after cutting, and the carbohydrate reserved in stubble of sorghum-sudangrass hybrid (Sorghum bicolor (L.) Moench) Pioneer 988. The experiment was undertaken in the Experimental Livestock Farm of Agriculture Coll., Seoul Nat'l Univ. In Suweon, 1981 and 1982. The results obtained are summarized as follows: 1. The dead stubble after cutting was found to be great with high rate of nitrogen fertilizer and low cutting height. It was also learned that the rainfall during forage cutting period made the dead stubble increased. 2. A significant higher (p<0.05) carbohydrate reserves in the stubble was observed in the high stubble height at the first cutting time and 6th through 7th day after the first cutting. The results indicate that the high stubble height reserves more carbohydrate for the early regrwoth stage after the first cutting when comparing with the low stubble. 3. The content of carbohydrate reserves was influenced by climete. Drought is caused to high content of carbohydrate, whereas, rain is caused to low content of that. The critical soluble carbohydrate content causing the death of stubble supposed to be 3 to 6% at least. 4. It is suggest that carbohydrate reserves in plant do not play a distinctive role for the regrowth in a summer annual forage like sorghum-sudangrass hybrid, but it might be rather influenced by the other factors, for example, environmental conditions at harvest and new bud.

  • PDF

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF

The importance of NIR spectroscopy in the estimation of nutritional quality of grains for ruminants

  • Flinn, Peter C.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1612-1612
    • /
    • 2001
  • The production of grain for export and domestic use is one of Australia's most important agricultural industries, and the NIR technique has been used extensively over many years for the routine monitoring of grain quality, particularly moisture and protein content. Because most Australian grain is intended for human food production, the determinants of grain quality for livestock feed, apart from protein, have been largely ignored. However the increasing use of grain for feeding to pigs, poultry, beef cattle and dairy cows has led to an important national research project entitled “Premium Grains for Livestock”. Two of the objectives of this project are to determine the compositional and functional characteristics of grains which influence their nutritional quality for the various classes of livestock, and to adopt rapid and objective analytical tests for these quality criteria. NIR has been used in this project firstly to identify a set of grain samples from a large population of breeders' lines which showed a wide spectral variation, and hence a potentially wide variation in nutritional value. The selected samples were not only subjected to an extensive array of chemical, physical and in vitro analyses, but also were grown out to produce sufficient quantities of grain to feed to animals in vivo studies. Additional grains were also strategically selected from farms in order to include the effect of weather damage, such as rain, drought and frost. In this study to date, NIR calibrations have been derived or attempted, on both ground and whole grains, for in vivo dry matter digestibility (DMD), pepsin-cellulase dry matter disappearance, protein, fat, acid detergent fibre, neutral detergent fibre, starch, in sacco DMD and in vitro assays to simulate starch digestion in the lumen and small intestine. Results so far indicate high calibration accuracy for chemical components (SECV 0.3 to 2.6%) and very promising statistics for in vivo DMD (SECV 1.8, $R^2$ 0.93, SD 7.0, range 61.9 to 92.3, n=60). There appears to be some potential for NIR to estimate some in vitro properties, depending upon the accuracy of reference methods and appropriate sample populations. Current work is in progress to extend the range of grains with in vivo DMD values (a very laborious and expensive process) and to increase the robustness of the various NIR calibrations, with the aim of implementing uniform testing procedures for nutritional value of grains throughout Australia.

  • PDF

Detection of Forest Ecosystem Disturbance Using Satellite Images and ISODATA (위성영상과 자기조직화 분류기법을 이용한 산림생태계교란 탐지: 우박 피해지와 매미나방 피해지의 사례연구)

  • Kim, Daesun;Kim, Eun-Sook;Lim, Jong-Hwan;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.835-846
    • /
    • 2020
  • Recent severe climate changes and extreme weather events have caused the uncommon types of forest ecosystem disturbances such as hails and gypsy moths. This paper describes the analysis of the forest ecosystem disturbances using ISODATA (Iterative Self-organizing Data Analysis Technique Algorithm) with the RapidEye and Sentinel-2 images, regarding the cases of the hail damages in Hwasun in 2017 and the gypsy moth damages in the Chiak Mountain in 2020. In the case of hail damages, the comparison of the June image of this study and the July field survey of the previous study showed that the damage severity increased from June to July as the drought overlapped after the trees were injured by the hails. In the case of gypsy moths, significant leaf damages were found from the image of June, and the damages were mainly distributed at the low-altitude slope near Wonju City. We made sure that satellite remote sensing is a very effective method to detect various and unusual forest ecosystem disturbances caused by climate change. Also, it is expected that the Korean Medium Satellite for Agriculture and Forestry scheduled to launch in 2024 can be actively utilized to monitor such forest ecosystem disturbances.

Status of research on the sweetpotato biotechnology and prospects of the molecular breeding on marginal lands (고구마 생명공학연구 현황과 조건 불리지역 분자육종 전망)

  • Kim, Ho Soo;Yoon, Ung-Han;Lee, Chan-Ju;Kim, So-Eun;Ji, Chang Yoon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.196-206
    • /
    • 2018
  • Dramatic increase in global population accompanied by rapid industrialization in developing countries has led to serious environmental, food, energy, and health problems. The Food and Agriculture Organization of the United Nations has estimated world population will increase to 9.7 billion by 2050 and require approximately 1.7 times more food, and more than 3.5 times energy than that of today. Particularly, sweetpotato is easy to cultivate in unfavorable conditions such as heat, drought, high salt, and marginal lands. In this respect, sweetpotato is an industrially valuable starch crop. To replace crops associated with these food and energy problems, it is necessary to develop new crops with improved nutrients and productivity, that can be grown on marginal lands, including desertification areas using plant biotechnology. For this purpose, exploring useful genes and developing genetically modified crops are essential strategies. Currently, sweetpotato [Ipomoea batatas (L.) Lam.] have been re-evaluated as the best health food and industrial crop that produces starch and low molecular weight antioxidants, such as vitamin A, vitamin E, anthocyanins and carotenoids. This review will focus on the current status of research on sweetpotato biotechnology on omics including genome sequencing, transcriptome, proteomics and molecular breeding. In addition, prospects on molecular breeding of sweetpotato on marginal lands for sustainable development were described.

Analysis of Paddy Rice Water Footprint under Climate Change Using AquaCrop (AquaCrop을 이용한 기후변화에 따른 미래 논벼 물발자국 변화 분석)

  • Oh, Bu-Yeong;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.45-55
    • /
    • 2017
  • Climate change causes changes in rainfall patterns, temperature and drought frequency. Climate change impact influences on water management and crop production. It is critical issue in agricultural industry. Rice is a staple cereal crop in South Korea and Korea uses a ponding system for its paddy fields which requires a significant amount of water. In addition, water supply has inter-relationship with crop production which indicates water productivity. Therefore, it is important to assess overall impacts of climate change on water resource and crop production. A water footprint concept is an indicator which shows relationship between water use and crop yield. In addition, it generally composed of three components depending on water resources: green, blue, grey water. This study analyzed the change trend of water footprint of paddy rice under the climate change. The downscaled climate data from HadGEM3-RA based on RCP 8.5 scenario was applied as future periods (2020s, 2050s, 2080s), and historical climate data was set to base line (1990s). Depending on agro-climatic zones, Suwon and Jeonju were selected for study area. A yield of paddy rice was simulated by using FAO-AquaCrop 5.0, which is a water-driven crop model. Model was calibrated by adjusting parameters and was validated by Mann-Whitney U test statistically. The means of water footprint were projected increase by 55 % (2020s), 51 % (2050s) and 48 % (2080s), respectively, from the baseline value of $767m^2/ton$ in Suwon. In case of Jeonju, total water footprint was projected to increase by 46 % (2020s), 45 % (2050s), 12 % (2080s), respectively, from the baseline value of $765m^2/ton$. The results are expected to be useful for paddy water management and operation of water supply system and apply in establishing long-term policies for agricultural water resources.

Bhumipol Dam Operation Improvement via smart system for the Thor Tong Daeng Irrigation Project, Ping River Basin, Thailand

  • Koontanakulvong, Sucharit;Long, Tran Thanh;Van, Tuan Pham
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.164-175
    • /
    • 2019
  • The Tor Tong Daeng Irrigation Project with the irrigation area of 61,400 hectares is located in the Ping Basin of the Upper Central Plain of Thailand where farmers depended on both surface water and groundwater. In the drought year, water storage in the Bhumipol Dam is inadequate to allocate water for agriculture, and caused water deficit in many irrigation projects. Farmers need to find extra sources of water such as water from farm pond or groundwater as a supplement. The operation of Bhumipol Dam and irrigation demand estimation are vital for irrigation water allocation to help solve water shortage issue in the irrigation project. The study aims to determine the smart dam operation system to mitigate water shortage in this irrigation project via introduction of machine learning to improve dam operation and irrigation demand estimation via soil moisture estimation from satellite images. Via ANN technique application, the inflows to the dam are generated from the upstream rain gauge stations using past 10 years daily rainfall data. The input vectors for ANN model are identified base on regression and principal component analysis. The structure of ANN (length of training data, the type of activation functions, the number of hidden nodes and training methods) is determined from the statistics performance between measurements and ANN outputs. On the other hands, the irrigation demand will be estimated by using satellite images, LANDSAT. The Enhanced Vegetation Index (EVI) and Temperature Vegetation Dryness Index (TVDI) values are estimated from the plant growth stage and soil moisture. The values are calibrated and verified with the field plant growth stages and soil moisture data in the year 2017-2018. The irrigation demand in the irrigation project is then estimated from the plant growth stage and soil moisture in the area. With the estimated dam inflow and irrigation demand, the dam operation will manage the water release in the better manner compared with the past operational data. The results show how smart system concept was applied and improve dam operation by using inflow estimation from ANN technique combining with irrigation demand estimation from satellite images when compared with the past operation data which is an initial step to develop the smart dam operation system in Thailand.

  • PDF

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.232-232
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of 6.29 Gm3 per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.408-408
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of $6.29Gm^3$ per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF