• Title/Summary/Keyword: Agricultural irrigation canal

Search Result 86, Processing Time 0.021 seconds

Consideration of Techniques for Agricultural Water Demands Estimation (농업용수 수요량 예측기법 고찰)

  • Park, Jae-Heung;Lee, Yong-Jig
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.37-40
    • /
    • 2002
  • It is to show the problems of the existing techniques to estimate agricultural water demand and to suggest the new methods considering the water demand for non-irrigated area and decrease of water loss in canal. It is to suggest the methods to improve the techniques for estimating agricultural water demand and to analyze the water demand and supply according to the facilities capacity. Until now, the concept of per the unit used to estimate agriculture water demand is useful to estimate demand, but is insufficient to cope with the variations of conditions in future. And the paddy area of government is not realistic against a trend of decrease. Water demand decrease is caused by constructions of irrigation facilities as constructing of irrigation canal, but application loss ratio is fixed. Increase of the water demand owing to the increase of the yield per the unit area is also the actual condition which is not considered. The guide-line must contain these contents for a demand estimate.

  • PDF

Measure and Classification of Agricultural Water Losses (농업용수 물손실 유형에 따른 손실량 재정립)

  • Ju, Wook-Jong;Kim, Jin-Taek;Oh, Seong-Tae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.45-50
    • /
    • 2005
  • Agricultural water is the main portion of water resources in Korea. And water loss of agricultural water is estimated 6% of all water resources. But studies and data for water loss aren't sufficient. We classified the agricultural water losses and measured the water losses in 6 experimental site. Measurements says that water losses ratio in main canal is 13.8%, water losses for distributing irrigation water is 31.1%. So, the total water losses is about 45%. But the water losses for distributing irrigation water is imperative factor for irrigation, So, it is not right that the water losses for distributing irrigation water is classified water losses and it is necessary to reclassify the agricultural water losses.

  • PDF

Development of Devices of the Diversion Gate in Irrigation Canal (용수로 분수문 개폐장치 개발)

  • Jeon, Jong-Gil;Kim, Kyung-Won;Lee, In-Bok;Chun, Man-Bok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.223-226
    • /
    • 2003
  • Devices of diversion gate used at irrigation canal, as a irrigation structures of agriculture, have shown serious problems such as corrosion, defect, inconvenience of operation, etc. Accordingly, handy devices of diversion gate have been developed and then tested in the laboratory. The operating types of the prototype were a rack-and-pinion type, an improved screw type that only gate plate was moved up and down while the screw axis was unmoved, and a remote control type which can be controlled from 50m away using a remote control system. Those 3 types were developed, and the improved screw type was shown the best operation through the laboratory tests.

  • PDF

Simplified Analysis of Agricultural Water Network Model Using SWMM - A Case Study of Mandae Reservoir - (SWMM을 활용한 농업용수 네트워크 모형 단순화 분석 - 만대 저수지 사례를 중심으로 -)

  • An, Sung-Soo;Bang, Na-Kyoung;Lee, Jong-Seo;Bang, Sung-Soo;Nam, Won-Ho;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.27-37
    • /
    • 2022
  • This study established a water supply network based on the operation case of Mandae Reservoir in Yanggu-gun, Gangwon-do, to analyze the efficient distribution and management of agricultural water supplied from the reservoir to irrigation areas using the hydraulic analysis model SWMM. In order to construct a model to analyze the water canal network, network conditions needs to be simplified, and in particular, excessive detail or simplification of the irrigation area can lead to errors in the analysis results. Therefore, the effect of the water canal network model was analyzed by simulating the appropriate simplification process step by step. The results of simplifying the actual block shape of the analysis target area using SWMM showed that there was no significant difference in the results even if 7 lots were simplified to 2. Also, it was found that the construction and analysis of a simplified network model were reliable when the excess quantity was 2% or more compared to the required quantity for each case of analysis of the paddy field.

Irrigation water temperature and cold water damage of paddy (관개수온과 벼의 냉수피해)

  • 정상옥;오창준
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.14-21
    • /
    • 1998
  • In 1996, a cold-water damage occured in the paddy field at downstream of the Unmoon dam. To study the cause and the preventive measures of the cold-water damage a field study was performed during the growing season of 1997. Field measurements such as water temperatures at reservoir, irrigation canal and in the paddy field were made. As a result, there was no cold-water damage due to the right irrigation water management practice in 1997. The cold-water damage is passible to happen, however, and the preventive measures were provided.

  • PDF

Estimation of Irrigation Return Flow on Agricultural Watershed in Madun Reservoir (마둔저수지 농업유역의 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;Bang, Na-Kyoung;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.85-96
    • /
    • 2021
  • Irrigation return flow is defined as the excess of irrigation water that is not evapotranspirated by direct surface drainage, and which returns to an aquifer. It is important to quantitatively estimate the irrigation return flow of the water cycle in an agricultural watershed. However, the previous studies on irrigation return flow rates are limitations in quantifying the return flow rate by region. Therefore, simulating irrigation return flow by accounting for various water loss rates derived from agricultural practices is necessary while the hydrologic and hydraulic modeling of cultivated canal-irrigated watersheds. In this study, the irrigation return flow rate of agricultural water, especially for the entire agricultural watershed, was estimated using the SWMM (Storm Water Management Model) module from 2010 to 2019 for the Madun reservoir located in Anseong, Gyeonggi-do. The results of SWMM simulation and water balance analysis estimated irrigation return flow rate. The estimated average annual irrigation return flow ratio during the period from 2010 to 2019 was approximately 55.3% of the annual irrigation amounts of which 35.9% was rapid return flow and 19.4% was delayed return flow. Based on these results, the hydrologic and hydraulic modeling approach can provide a valuable approach for estimating the irrigation return flow under different hydrological and water management conditions.

Simulating Daily Operational Characteristics of Irrigation (관개조직의 일별 모의 조작)

  • 이남호;정하우;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.67-78
    • /
    • 1990
  • A decision support system, Daily Irrigation Network Operation Simulation model (DINOPS) was developed that can adequately describe the physical behavior of an irrigation system. The model is to depict the physical features of complex water allocation schemes of the irrigation system and to simulate the response of the system to different irrigation schemes. The model was validated on the Banweol irrigation district by comparing the simulated canal discharges and paddy water levels with the field data. The operation of the DINOPS model was demonstrated on the irrigation district where several irrigation management practices were evaluated with computing irrigation efficiencies and rainfall effectiveness respectively. The model sensitivity with respect to heights of bund and block diversion rates were analyzed and discussed.

  • PDF

A Decision Support System for Paddy Rice Irrigation

  • Park, Seung-Woo;Chung, Ha-Woo;Kim, Byeong-Jin;Koo, Jee-Hee
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.99-113
    • /
    • 1991
  • Integrated irrigation management system (IIMS) that is incorporated with a microcomputer-based decision support system (DSS) has been developed and applied to paddy rice irrigation systems management. The system hardwares consist of field data acquisition units, data transmission units, central data processing units, and printing and displaying units. Ridld data to be collected include incremental rainfall, streamflow and reservoir water levels, and water levels at several irrigation canal sections within an irrigation sidtricts. The softwares are to process field data, real-time forecasting, irrigation control data, and decision variables from data-base and simulation model subsystems. And the user-interface subsystems are incorporated to present the water system operators and managers the results from data and model sugsystems. User-friendly menu with animated graphic modules are adopted to help understand irrigation controls for the district. This paper issues the overal descriptions of DSS as applied to Anjuk irrigation district. The details of major model components for the irrigation controls are presented along with real-time data collection systems. The potentials of DSS have been appraised very practical and promising for better irrigation system operation and management.

  • PDF

Lifetime Reliability Analysis of Irrigation System (관개조직의 수명기간 신뢰성 해석)

  • Kim Han-Joong;Lee Jeong-Jae;Im Sang-Joon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.35-44
    • /
    • 2003
  • A system reliability method is proposed to decide reliable serviceability of agricultural irrigation system. Even though reliability method is applied to real engineering situations involving actual life environments and maintaining costs, a number of Issues arise as a modeling and analysis level. This article use concepts that can be described the probability of failure with time variant and series-parallel system reliability analysis model. A proposed method use survivor function that can simulate a time-variant performance function for a lifetime before it is required essential maintenance or replacement to define a target probability of failure in agricultural irrigation canal. In the further study, it is required a relationship between a state of probability of failure and current serviceability to make the optimum repair strategy to maintain appropriate serviceability of an irrigation system.