• Title/Summary/Keyword: Agricultural Residue

Search Result 672, Processing Time 0.025 seconds

Determination of Ametryn Residue in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 ametryn의 분석)

  • Lee, Su-Jin;Kim, Young-Hak;Song, Lee-Seul;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.125-133
    • /
    • 2011
  • Ametryn is used in USA, China, and Japan, but not introduced in Korea yet. So, MRL (Maximum Residue Level), and analytical method of ametryn were not establishment in Korea. Therefore, this experiment was conducted to establish a determination method for ametryn residue in crops using HPLC-UVD/MS. Ametryn residue was extracted with acetone from representative samples of five raw products which comprised hulled rice, soybean, apple, green pepper, and Chinese cabbage. The extract was diluted with saline water, and dichloromethane partition was followed to recover ametryn from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The ametryn was quantitated by HPLC with UVD, using a Tosoh ODS 120T ($4.6{\times}250$ mm) column. The crops were fortified with ametryn at 2 levels per crop. Mean recovery ratio were ranged from 83.7% for a 0.2 mg/kg in soybean to 91.1% for a 1.0 mg/kg in hulled rice. The coefficients of variation were ranged from 1.2% for a 1.0 mg/kg in hulled rice to 3.6% for a 1.0 mg/kg in soybean. Quantitative limit of amatryn was 0.02 mg/kg in representative 5 crop samples. A LC/MS with selected-ion monitoring was also provided to confirm the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of ametryne in agricultural commodities.

Residue analysis of spinetoram and spinosad on paprika leaf using the modified QuEChERS pre-treatment methods

  • Kim, Young-Shin;Yang, Jun-Young;Jin, Na-Young;Yu, Yong-Man;Youn, Young-Nam;Lim, Chi-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.487-494
    • /
    • 2017
  • Spinosad and spinetoram are widely used insecticides for the control of lepidopteran larvae, leaf miners, and thrips; however, they might also have low toxicity toward beneficial insects like bees. Because these pesticides are easily photolyzed by ultraviolet radiation, the QuEChERS method, with its simple pretreatment procedure, is often used for analyzing residues of spinosad and spinetoram. The present study performed a residue analysis using a modified QuEChERS method by pretreating with ammonium salt. The limit of detection (LOD) of the modified method was 0.05 mg/kg and the limit of quantification (LOQ) was 0.25 mg/kg. The coefficient of determination ($R^2$) for the calibration curve was 0.999. Also, we examined any change in the adhesion of spinosad and spinetoram on the plants depending on a spray volume. The adhesion was approximately 70% when the spray volume was increased from 60 L to 120 L per 10 a whereas the adhesion was approximately 37% when the spray volume was increased from 125 L to 250 L. This showed that the amount of adhesion decreased with the higher spray volume. The efficacy result of spinetoram was that over 90% of Frankliniella occidentalis was controlled with the application volume of 125 L per 10 a. Therefore, the result of this study indicates that control of insects is effective and sufficient with a spray volume of 125 L per 10 a in paprika cultivation facilities.

Residue Patterns of Active Ingredients Derived from Melia Azedarach, Nerium Ndicum, and Coptis Chinensis in Rice Using LC-MS/MS (LC-MS/MS를 이용한 멀구슬, 협죽도, 황련 유래 활성성분의 벼 중 잔류양상 연구)

  • Park, Joon-Seong;Nam, Hyo-Song;Kim, Yong-Hwan;Kim, Do-ik;Kim, Sun-Am
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.128-133
    • /
    • 2015
  • BACKGROUND: Plant extracts have been used as environment friendly agricultural materials for organic farming in South Korea. However safety evaluation on the plant extracts was not properly tested. The aim of this study was to evaluate safety of the extracts from Melia azedarach, Nerium indicum and Coptis chinensis on cultivating rice. METHODS AND RESULTS: Pant extarcts 300-fold diluted were treated on rice, and residues of M. azedarach, N. indicum and C. chinensis were determined. The analytes from the rice samples were detected by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The method was validated, and good linearities ($r^2=0.995-0.998$), specificity, and recoveries were obtained. Limits of detection were 0.01 mg/kg for all of the target compounds. Recoveries were 79.3-118.3% at 0.1 mg/kg and 75.2-111.5% at 0.5 mg/kg. The residue levels were below 0.030 mg/kg for azadirachtin, 0.320 mg/kg for oleandrin and 1.460 mg/kg for berberine. CONCLUSION(S): The extracts of M. azedarach, N. indicum and C. chinensis contained azadirachtin, oleandrin and berberine as an active ingredient, respectively. The residue of three active ingredients dramatically decreased after treatment in all fruits, stems and roots of rice.

Dissipation pattern of pesticide residues in/on different varieties of lettuce applied with foliar spraying under greenhouse condition (시설재배에서의 상추품종별 살포농약의 소실양상)

  • Lee, Hee-Dong;Ihm, Yang-Bin;Kwon, Hye-Young;Kim, Jin-Bae;Kyung, Kee-Sung;Kim, Chan-Sub;Oh, Byung-Youl;Im, Geon-Jae;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.354-358
    • /
    • 2005
  • The study was carried out to investigate dissipation pattern of pesticide residue in/on different varieties of lettuce applied with foliar spraying under greenhouse. The initial deposited amount of alpha-cypermethrin and imidacloprid in/on the crop was entirely corresponded with shape of the crop. Dissipation of deposited pesticide residue was supposed to be related with degradation by sunlight and wash off by watering rather than dilution effect by biomass increase. The crop grouping in leaf vegetables has to be carefully considered even in lettuce for dissipation pattern of pesticide residue; head type and leafy type.

Monitoring of Neonicotinoid Pesticide Residues in Fruit Vegetable and Human Exposure Assessment (과채류 중 Neonicotinoid계 농약의 모니터링 및 인체노출평가)

  • Park, Byung-Jun;Son, Kyung-Ae;Paik, Min-Kyoung;Kim, Jin-Bae;Kwon, Hye-Young;Hong, Su-Myeong;Im, Geon-Jae;Hong, Moo-Ki
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.2
    • /
    • pp.104-109
    • /
    • 2010
  • We investigated five neonicotinoid pesticide residues (acetamiprid, clothianidin, imidacloprid, thiacloprid, thiamethoxam) in fruit vegetables and estimated the exposure of neonicotinoid pesticide residue through fruit vegetable consumption using a deterministic approach. Two hundred forty samples of eight fruit vegetables cultivated in Korea were analyzed for their pesticide residue contents. Acetamiprid had the highest detection frequency and the highest residue level in pepper. However, all pesticide levels detected didn't exceed national MRLs. The results using a deterministic approach showed that for chronic and acute study of all neonicotinoid pesticide residues, the exposure was about 50 times lower than toxicological endpoint values. It is necessary to understand that the exposure assessment in this study using a probabilistic approach should be regarded as a important knowledge in the decision-making process.

Establishment of Analytical Method for Fenhexamid Residue in Korean Cabbage, Apple, Mandarin and Green Pepper (HPLC를 이용한 배추, 사과, 감귤, 고추 중 살균제 Fenhexamid의 정밀 분석법 확립)

  • Lee, Hye-Ri;Riu, Myoung-Joo;Park, Hee-Won;Na, Ye-Rim;Song, Hyuk-Hwan;Keum, Young-Soo;Zhu, Yongzhe;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.223-231
    • /
    • 2009
  • This study was performed to develop a precise single residue analytical method of fungicide fenhexamid in representative crops for general residue analytical method which could be applied to most of crops. Korean cabbage, mandarin, apple and green pepper were selected, macerated, extracted with acetone, concentrated and partitioned with dichloromethane. Then the extracts were concentrated and cleaned-up through Florisil column with ethyl acetate/0.1% acetic acid in hexane [15:85, (v/v)] before concentration and analysis with HPLC. LOQ (Limit of Quantitation) of fenhexamid was 1 ng (S/N>10) and MQL (Method Quantitative Limit) was 0.01 mg/kg. Recoveries were measured at two fortification levels (10 MQL and 50 MQL) on crop samples and ranged from 85.2% to 94.8% (mean recoveries) and coefficients of variation were <10% regardless of sample type.

Estimation on the Risk of Pesticide Exposure by Food Intake

  • Chun, Ock-Kyoung;Kang, Hee-Gon;Cho, Nam-Jun
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2002.05a
    • /
    • pp.139-142
    • /
    • 2002
  • This study carried out to evaluate TMDI(theoretical maximum daily intake) and EDI(estimated daily intake) for Korean by using MRLs, food intake, residue data, and correction factors and compare with ADI(acceptable daily intake) in order to estimate the health risk based on the pesticide exposure.

  • PDF

Establishment of Pre-Harvest Residue Limit for Pyrimethanil and Methoxyfenozide during Cultivation of grape (포도(Vitis vinifera L.) 중 Pyrimethanil 및 Methoxyfenozide의 생산단계 잔류허용기준 설정)

  • Kim, Ji Yoon;Woo, Min Ji;Hur, Kyung Jin;Manoharan, Saravanan;Kwon, Chan-Hyeok;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2015
  • The present study was aimed to predict the pre-harvest residue limits (PHRLs) of pyrimethanil (fungicide) and methoxyfenozide (insecticide) in grape, and to estimate their biological half-lives and residual characteristics. The pesticides were sprayed once on grape in two different fields 10 days before harvest. At the end of 0, 1, 2, 3, 5, 7 and 10 days after application, samples were harvested for further analysis. The residual pesticides were extracted with acetonitrile and partitioned with dichloromethane, and the high-performance liquid chromatography with diode array detector (HPLC/DAD) was employed for the residue analysis. The results obtained in the present study show that the limit of detection of both pesticides were found to be $0.01mg\;kg^{-1}$. The recoveries of these pesticides were ranged between 80.6% and 102.5% with coefficient of variation lower than 10%. The biological half-lives of both pesticides were observed in field 1 and field 2 which shows 7.7 and 7.4 days for pyrimethanil and 5.1 and 6.1 days for methoxyfenozide, respectively. Further, the PHRL of pyrimethanil and methoxyfenozide was found to be $8.90mg\;kg^{-1}$ and $5.51mg\;kg^{-1}$, respectively at 10 days before harvest. Consequently, the present study suggests that the residual amounts of both pesticides will be lower than the maximum residue limits (MRLs) when grape is harvested.

Development of Analytical Method for Fipronil Residues in Agricultural Commodities Using GC-ECD/MS (GC-ECD/MS를 이용한 농산물 중 Fipronil의 잔류 분석법 개발)

  • Ahn, Kyung-Geun;Kim, Gyeong-Ha;Kim, Gi-Ppeum;Hwang, Young-Sun;Kang, In-Kyu;Lee, Young Deuk;Choung, Myoung-Gun
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.309-317
    • /
    • 2015
  • BACKGROUND: An analytical method was developed using GC-ECD/MS to precisely determine the residue of fipronil, a phenylpyrazole insecticide used to control a wide range of foliar and soil-borne pests.METHOD AND RESULTS: Fipronil residue was extracted with acetone from representative samples of five raw products which comprised hulled rice, soybean, Kimchi cabbage, green pepper, and apple. The extract was diluted with saline water, and fipronil was partitioned into n-hexane/dichloromethane (20/80, v/v) to remove polar co-extractives in the aqueous phase. Florisil column chromatography was additionally employed for final purification of the extract. Fipronil was separated and quantitated by GC-ECD using a DB-17 capillary column. Accuracy of the proposed method was validated by the recovery from crop samples fortified with fipronil at 3 levels per crop in each triplication.CONCLUSION: Mean recoveries ranged from 86.6% to 106.0% in five representative agricultural commodities. The coefficients of variation were less than 10%. Limit of quantitation of fipronil was 0.004 mg/kg as verified by the recovery experiment. A confirmatory technique using GC/MS with selected-ion monitoring was also provided to clearly identify the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of fipronil in agricultural commodities.

Study Analysis of Isocycloseram and Its Metabolites in Agricultural Food Commodities

  • Ji Young Kim;Hyochin Kim;Su Jung Lee;Suji Lim;Gui Hyun Jang;Guiim Moon;Jung Mi Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.71-81
    • /
    • 2023
  • An accurate and easy-to-use analytical method for determining isocycloseram and its metabolites (SYN549431 and SYN548569) residue is necessary in various food matrixes. Additionally, this method should satisfy domestic and international guidelines (Ministry of Food and Drug Safety and Codex Alimentarius Commission CAC/GL 40). Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) was used to determine the isocycloseram and its metabolites residue in foods. To determine the residue and its metabolites, a sample was extracted with 20 mL of 0.1% formic acid in acetonitrile, 4 g magnesium sulfate anhydrous and 1 g sodium chloride and centrifuged (4,700 G, 10 min, 4℃). To remove the interferences and moisture, d-SPE cartridge was performed before LC-MS/MS analysis with C18 column. To verify the method, a total of five agricultural commodities (hulled rice, potato, soybean, mandarin, and red pepper) were used as a representative group. The matrix-matched calibration curves were confirmed with coefficients of determination (R2) ≥ 0.99 at a calibration range of 0.001-0.05 mg/kg. The limits of detection and quantification were 0.003 and 0.01 mg/kg, respectively. Mean average recoveries were 71.5-109.8% and precision was less than 10% for all five samples. In addition, inter-laboratory validation testing revealed that average recovery was 75.4-107.0% and the coefficient of variation (CV) was below 19.4%. The method is suitable for MFDS, CODEX, and EU guideline for residue analysis. Thus, this method can be useful for determining the residue in various food matrixes in routine analysis.