• Title/Summary/Keyword: Agricultural Food Processing

Search Result 517, Processing Time 0.027 seconds

Analysis on Food Material Industry in Korea (식재료 산업의 현황 및 발전 방안)

  • Kim, Soung-Hun;Yu, Jung-Rim
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.161-170
    • /
    • 2010
  • In Korea, food material industry encounters the emerging market which results from the growth of food service industry and food processing industry. Food material suppliers think that the total sales in Korean market may be around 20 trillion won. However, very small numbers of studies about Korean food material industry have been conducted. This paper analyzes the current status of food material industry and the market structure in Korea, and presents several suggestions for the development of Korean food material industry as following: building up the function of fresh-cut in production area, improving market structure, settling down the cold-chain system, enforcing the certification program for food safety.

Characteristics of $Gammakgeolli$ Added with Processed Forms of Persimmon (첨가하는 감의 가공형태에 따른 감막걸리 품질특성)

  • Im, Chae-Yun;Jeong, Seok-Tae;Choi, Han-Seok;Choi, Ji-Ho;Yeo, Soo-Hwan;Kang, Woo-Won
    • Food Science and Preservation
    • /
    • v.19 no.1
    • /
    • pp.159-166
    • /
    • 2012
  • To investigate the characteristics of $Gammakgeolli$ to which processed forms of persimmon were added, $Gokkam$, $Gammalaengi$, whole powder, peel powder, and paste were used as various processed forms. The moisture, total polyphenol, and soluble-solid contents of the persimmon used for making $Gammakgeolli$ showed a big difference according to the processed form of persimmon, and influenced the total polyphenol and alcohol contents of the $Gammakgeolli$. The pH and total acid of the $Gammakgeolli$, which were 3.7~4.1 and 0.20~0.29% (w/v), respectively, were similar to those of commercial $Makgeolli$. The amino acidity increased on the fifth day after fermentation from that on the third day, and showed relatively high levels in the whole power, peel power, and paste. The volatile-acid contents of the $Gammakgeolli$s were within the range of 80~100 ppm and showed the highest level in the persimmon-paste-treated sample. Among the major organic acids of $Gammakgeolli$ (oxalic, citric, tartaric, malic, succinic, lactic, and acetic acid), lactic acid had the highest concentration. The $Gammakgeolli$ to which hole power or paste was added showed a high level of yellowness and a good color in the sensatory evaluation. In the sensory evaluation (selection rate) of the taste and overall acceptability, the $Gammakgeolli$ treated with $Gammalaengi$ was the best.

Effects of Different Ripening Stage and Varieties on Quality Characteristics and Antioxidant Activity of Aronia (Aronia Melaocarpa) (품종 및 숙도 단계에 따른 아로니아의 이화학적 품질 및 항산화 활성 연구)

  • Park, Ji Hyun;Kim, Kyung Mi;Cho, Yong Sik;Kim, Ha Yun
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.374-380
    • /
    • 2018
  • Aronia has low preference because of astringent and bitter taste. Appropriate processing is essential for eating aronia. For the processing of aronia, the aim of this study is to provide basic information on the cultivar and ripening stages. Three varieties (Viking, Nero and McKenzie) were studied. We divided the stages of maturity into four levels based on color. The physicochemical properties were analyzed. In the case of hardness, the first stage of maturity was the highest, and there was no difference between varieties. As maturation progressed, brightness and yellowness gradually decreased, and redness was highest at the second stage. The sugar content was the lowest in the Viking and significantly increased with the maturity stage. The acidity was highest in the Viking. Nero showed the highest radical scavenging ability. Total polyphenols and flavonoids were the highest in Nero. The highest level was shown at the first stage by the ripening stage.

Development of Plastic/Gelatin Bilayer Active Packaging Film with Antibacterial and Water-Absorbing Functions for Lamb Preservation

  • Shijing Wang;Weili Rao;Chengli Hou;Raheel Suleman;Zhisheng Zhang;Xiaoyu Chai;Hanxue Tian
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1128-1149
    • /
    • 2023
  • In order to extend the shelf life of refrigerating raw lamb by inhibiting the growth of microorganisms, preventing the oxidation of fat and protein, and absorbing the juice outflow of lamb during storage, an active packaging system based on plastic/gelatin bilayer film with essential oil was developed in this study. Three kinds of petroleum-derived plastic films, oriented polypropylene (OPP), polyethylene terephthalate, and polyethylene, were coated with gelatin to make bilayer films for lamb preservation. The results showed significant improvement in the mechanical properties, oxygen, moisture, and light barriers of the bilayer films compared to the gelatin film. The OPP/gelatin bilayer film was selected for further experiments because of its highest acceptance by panelists. If the amount of juice outflow was less than 350% of the mass of the gelatin layer, it was difficult for the gelatin film to separate from lamb. With the increase in essential oil concentration, the water absorption capacity decreased. The OPP/gelatin bilayer films with 20% mustard or 10% oregano essential oils inhibited the growth of bacteria in lamb and displayed better mechanical properties. Essential oil decreased the brightness and light transmittance of the bilayer films and made the film yellow. In conclusion, our results suggested that the active packaging system based on OPP/gelatin bilayer film was more suitable for raw lamb preservation than single-layer gelatin film or petroleum-derived plastic film, but need further study, including minimizing the amount of essential oil, enhancing the mechanical strength of the gelatin film after water absorption.

Detection of E.coli biofilms with hyperspectral imaging and machine learning techniques

  • Lee, Ahyeong;Seo, Youngwook;Lim, Jongguk;Park, Saetbyeol;Yoo, Jinyoung;Kim, Balgeum;Kim, Giyoung
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.645-655
    • /
    • 2020
  • Bacteria are a very common cause of food poisoning. Moreover, bacteria form biofilms to protect themselves from harsh environments. Conventional detection methods for foodborne bacterial pathogens including the plate count method, enzyme-linked immunosorbent assays (ELISA), and polymerase chain reaction (PCR) assays require a lot of time and effort. Hyperspectral imaging has been used for food safety because of its non-destructive and real-time detection capability. This study assessed the feasibility of using hyperspectral imaging and machine learning techniques to detect biofilms formed by Escherichia coli. E. coli was cultured on a high-density polyethylene (HDPE) coupon, which is a main material of food processing facilities. Hyperspectral fluorescence images were acquired from 420 to 730 nm and analyzed by a single wavelength method and machine learning techniques to determine whether an E. coli culture was present. The prediction accuracy of a biofilm by the single wavelength method was 84.69%. The prediction accuracy by the machine learning techniques were 87.49, 91.16, 86.61, and 86.80% for decision tree (DT), k-nearest neighbor (k-NN), linear discriminant analysis (LDA), and partial least squares-discriminant analysis (PLS-DA), respectively. This result shows the possibility of using machine learning techniques, especially the k-NN model, to effectively detect bacterial pathogens and confirm food poisoning through hyperspectral images.

Cellulose-based Nanocrystals: Sources and Applications via Agricultural Byproducts

  • Seo, Yu-Ri;Kim, Jin-Woo;Hoon, Seonwoo;Kim, Jangho;Chung, Jong Hoon;Lim, Ki-Taek
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.59-71
    • /
    • 2018
  • Purpose: Cellulose nanocrystals (CNCs) are natural polymers that have been promoted as a next generation of new, sustainable materials. CNCs are invaluable as reinforcing materials for composites because they can impart improved mechanical, chemical, and thermal properties and they are biodegradable. The purpose of this review is to provide researchers with information that can assist in the application of CNCs extracted from waste agricultural byproducts (e.g. rice husks, corncobs, pineapple leaves). Methods & Results: This paper presents the unique characteristics of CNCs based on agricultural byproducts, and lists processing methods for manufacturing CNCs from agricultural byproducts. Various mechanical treatments (microfluidization and homogenization) and chemical treatments (alkali treatment, bleaching and hydrolysis) can be performed in order to generate nanocellulose. CNC-based composite properties and various applications are also discussed. Conclusions: CNC-based composites from agricultural byproducts can be combined to meet end-use applications such as sensors, batteries, films, food packaging, and 3D printing by utilizing their properties. The review discusses applications in food engineering, biological engineering, and cellulose-based hydrogels.

Expression and Purification of Extracellular Solute-Binding Protein (ESBP) in Escherichia coli, the Extracellular Protein Derived from Bifidobacterium longum KACC 91563

  • Song, Minyu;Kim, Hyaekang;Kwak, Woori;Park, Won Seo;Yoo, Jayeon;Kang, Han Byul;Kim, Jin-Hyoung;Kang, Sun-Moon;Van Ba, Hoa;Kim, Bu-Min;Oh, Mi-Hwa;Kim, Heebal;Ham, Jun-Sang
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.601-609
    • /
    • 2019
  • Bifidobacterium longum KACC 91563 secretes family 5 extracellular solute-binding protein via extracellular vesicle. In our previous work, it was demonstrated that the protein effectively alleviated food allergy symptoms via mast cell specific apoptosis, and it has revealed a therapeutic potential of this protein in allergy treatment. In the present study, we cloned the gene encoding extracellular solute-binding protein of the strain into the histidine-tagged pET-28a(+) vector and transformed the resulting plasmid into the Escherichia coli strain BL21 (DE3). The histidine-tagged extracellular solute-binding protein expressed in the transformed cells was purified using Ni-NTA affinity column. To enhance the efficiency of the protein purification, three parameters were optimized; the host bacterial strain, the culturing and induction temperature, and the purification protocol. After the process, two liters of transformed culture produced 7.15 mg of the recombinant proteins. This is the first study describing the production of extracellular solute-binding protein of probiotic bacteria. Establishment of large-scale production strategy for the protein will further contribute to the development of functional foods and potential alternative treatments for allergies.

Effect of Different Tumbling Marination Treatments on the Quality Characteristics of Prepared Pork Chops

  • Gao, Tian;Li, Jiaolong;Zhang, Lin;Jiang, Yun;Ma, Ruixue;Song, Lei;Gao, Feng;Zhou, Guanghong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.260-267
    • /
    • 2015
  • The effect of different tumbling marination treatments (control group, CG; conventional static marination, SM; vacuum continuous tumbling marination, CT; vacuum intermittent tumbling marination, IT) on the quality characteristics of prepared pork chops was investigated under simulated commercial conditions. The CT treatment increased (p<0.05) the pH value, $b^*$ value, product yield, tenderness, overall flavor, sensory juiciness and overall acceptability in comparison to other treatments for prepared boneless pork chops. The CT treatment decreased (p<0.05) cooking loss, shear force value, hardness, gumminess and chewiness compared with other treatments. In addition, CT treatment effectively improved springiness and sensory color more than other treatments. However, IT treatment achieved the numerically highest (p<0.05) $L^*$ and $a^*$ values. These results suggested that CT treatment obtained the best quality characteristics of prepared pork chops and should be adopted as the optimal commercial processing method for this prepared boneless pork chops.

Effect of Different Tumbling Marination Methods and Time on the Water Status and Protein Properties of Prepared Pork Chops

  • Gao, Tian;Li, Jiaolong;Zhang, Lin;Jiang, Yun;Yin, Maowen;Liu, Yang;Gao, Feng;Zhou, Guanghong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.1020-1027
    • /
    • 2015
  • The combined effect of tumbling marination methods (vacuum continuous tumbling marination, CT; vacuum intermittent tumbling marination, IT) and effective tumbling time (4, 6, 8, and 10 h) on the water status and protein properties of prepared pork chops was investigated. Results showed that regardless of tumbling time, CT method significantly decreased the muscle fiber diameter (MD) and significantly increased the total moisture content, product yield, salt soluble proteins (SSP) solubility, immobilized water component (p<0.05) compared with IT method. With the effective tumbling time increased from 4 h to 10 h, the fat content and the MD were significantly decreased (p<0.05), whereas the SSP solubility of prepared pork chops increased firstly and then decreased. Besides, an interactive effect between CT method and effective tumbling time was also observed for the chemical composition and proportion of immobilized water (p<0.05). These results demonstrated that CT method of 8 h was the most beneficial for improving the muscle structure and water distribution status, increasing the water-binding capacity and accelerating the marinade efficiency of pork chops; and thus, it should be chosen as the most optimal treatment method for the processing production of prepared pork chops.