• Title/Summary/Keyword: Aging-related degradation

Search Result 59, Processing Time 0.022 seconds

Research on aging-related degradation of control rod drive system based on dynamic object-oriented Bayesian network and hidden Markov model

  • Kang Zhu;Xinwen Zhao;Liming Zhang;Hang Yu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4111-4124
    • /
    • 2022
  • The control rod drive system is critical to the reactor's reliable operation. The performance of its control system and mechanical system will gradually deteriorate because of operational and environmental stresses, thus increasing the reactor's operational risk. Currently there are few researches on the aging-related degradation of the entire control rod drive system. Because it is difficult to quantify the effect of various environmental stresses and establish an accurate physical model when multiple mechanisms superimposed in the degradation process. Therefore, this paper investigates the aging-related degradation of a control rod drive system by integrating Dynamic Object-Oriented Bayesian Network and Hidden Markov Model. Uncertainties in the degradation of the control system and mechanical system are addressed by using fuzzy theory and the Hidden Markov Model respectively. A system which consists of eight control rod drive mechanisms divided into two groups is used to demonstrate the method. The aging-related degradation of the control rod drive system is analyzed by the Bayesian inference algorithm based on the accelerated life test data, and the impact of different operating schemes on the system performance is also investigated. Meanwhile, the components or units that have major impact on the system's performance are identified at different operational phases. Finally, several essential safety measures are suggested to mitigate the risk caused by the system degradation.

IDENTIFICATION AND ASSESSMENT OF AGING-RELATED DEGRADATION OCCURRENCES IN NUCLEAR POWER PLANTS

  • Choi, In-Kil;Choun, Young-Sun;Kim, Min-Kyu;Nie, Jinsuo;Braverman, Joseph I.;Hofmayer, Charles H.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.297-310
    • /
    • 2012
  • Aging-related degradation of nuclear power plant components is an important aspect to consider in securing the long term safety of the plant, especially the seismic safety, since the degradation of the components affects not only their seismic capacity but their response. This can cause a change in the seismic margin of a component and the overall seismic safety of a system. To better understand the status and characteristics of degradation of components in Nuclear Power Plants (NPPs), the degradation occurrences of components in the U.S. NPPs were identified by reviewing recent publicly available information sources and the characteristics of these occurrences were evaluated and compared to observations from the past. Ten categories of components that are of high risk significance in Korean NPPs were identified, comprising anchorage, concrete, containment, exchanger, filter, piping systems, reactor pressure vessels, structural steel, tanks, and vessels. Software tools were developed to expedite the review process. Results from this review effort were compared to previous data in the literature to characterize the overall degradation trends.

DGA Gases related to the Aging of Power Transformers for Asset Management

  • Kweon, Dongjin;Kim, Yonghyun;Park, Taesik;Kwak, Nohong;Hur, Yongho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.372-378
    • /
    • 2018
  • Life management technology is required as the failure risk of aged power transformers increases. Asset management technology is developed to evaluate the remaining life, establish the replacement strategies, and decide the optimal investment based on the reliability and economy of power transformers. The remaining life assessment uses data such as installation, operation, maintenance, refurbishment, and failure of power transformers. The optimal investment also uses data such as maintenance, outage, and social costs. To develop the asset management system for power transformers, determining the degradation parameters related to the aging of power transformers and evaluating the condition of power transformers using these parameters are important. In this study, since 1983, 110,000 Dissolved Gas Analysis (DGA) data have been analyzed to determine the degradation parameters related to the aging of power transformers. The alarm rates of combustible gases ($H_2$, $C_2H_2$, $C_2H_4$, $CH_4$, and $C_2H_6$), TCG, CO, and $CO_2$ were analyzed. The end of life and failure rate (bathtub curve) of power transformers were also calculated based on the failure data from 1981 to 2014. The DGA gases related to discharge, overheating, and insulation degradation were determined based on alarm and failure rates. $C_2H_2$, $C_2H_6$, and $CO_2$ were discharge, oxidation, and insulation degradation parameters related to the aging of power transformers.

A comprehensive study of the effects of long-term thermal aging on the fracture resistance of cast austenitic stainless steels

  • Collins, David A.;Carter, Emily L.;Lach, Timothy G.;Byun, Thak Sang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.709-731
    • /
    • 2022
  • Loss of fracture resistance due to thermal aging degradation is a potential limiting factor affecting the long-term (80+ year) viability of nuclear reactors. To evaluate the effects of decades of aging in a practical time frame, accelerated aging must be employed prior to mechanical characterization. In this study, a variety of chemically and microstructurally diverse austenitic stainless steels were aged between 0 and 30,000 h at 290-400 ℃ to simulate 0-80+ years of operation. Over 600 static fracture tests were carried out between room temperature and 400 ℃. The results presented include selected J-R curves of each material as well as K0.2mm fracture toughness values mapped against aging condition and ferrite content in order to display any trends related to those variables. Results regarding differences in processing, optimal ferrite content under light aging, and the relationship between test temperature and Mo content were observed. Overall, it was found that both the ferrite volume fraction and molybdenum content had significant effects on thermal degradation susceptibility. It was determined that materials with >25 vol% ferrite are unlikely to be viable for 80 years, particularly if they have high Mo contents (>2 wt%), while materials less than 15 vol% ferrite are viable regardless of Mo content.

Representative Dissolved Gases indicating Aging of Power Transformers (전력용 변압기 경년열화와 관련된 DGA 대표가스에 관한 연구)

  • Kweon, Dongjin;Kim, Yonghyun;Joo, Byoungsoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • The life management technology becomes important as the failure risk of the aged power transformers increases. Asset management technology, therefore, has been developed to evaluate the remaining life and build replacement strategies of power transformers, which enables an optimal investment decisions based on reliability and economic feasibility. The remaining life assessment technology uses data related to such as installation, operation, maintenance, refurbishment, and disposed history of power transformers. The optimal investment decision additionally uses data related to failure and social costs. To develop the asset management technology in power transformers, it is important to find deterioration parameters directly indicating degradation of power transformers. In this study, 110,000 DGA data during the past 35 years have been analyzed in order to find the deterioration parameters related to the degradation of power transformers. The alarm rates of combustible gases ($H_2$, $C_2H_2$, $C_2H_4$, $CH_4$, $C_2H_6$), TCG CO, and $CO_2$ were analyzed as deterioration parameters. The origin of the gas was discussed in connection with discharge, overheating and insulation aging.

Experimental Evaluation on Degradation Characteristics of Epoxy Coating by Using Adhesion Force and Impedance (부착력과 임피던스를 이용한 에폭시 도장재 열화 특성에 관한 실험적 평가)

  • Nah, Hwan-Seon;Kim, Noh-Yu;Kwon, Ki-Joo;Song, Young-Chol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.149-157
    • /
    • 2003
  • The purpose of this paper is to quantitatively investigate aging state of epoxy coating on containment structure at nuclear power plant. In order to evaluate an physical bonding of the epoxy coating, adhesion test was performed on a degraded epoxy coating on concrete specimens fabricated by accelerated aging experiment. In addition, impedance data by ultrasonic test were measured to compare with adhesion data. From almost 50 % of the specimens, aging phenomena of epoxy coating such as pin hole, blistering was discovered. To improve reliability on quality degradation of epoxy, co-relation between two kinds of different data was analyzed. By tracing co-related these data, it was possible to figure out physical state of as-built epoxy coating. The possibility to develop new methodology of time - dependent aging state on epoxy coating was found and discussed.

Nondestructive Evaluation for Mechanical Degradation of Ultrasuper-Critical Heat-Resistance Steel by Reversible Permeability (가역투자율를 이용한 초초임계압 내열강의 기계적 열화에 관한 비파괴평가)

  • Ahn, SeongBin;Kim, JaeJin;Seo, DongMin;Kim, ChungSeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.46-52
    • /
    • 2018
  • Nondestructive evaluation for mechanical degradation of ultrasuper-critical (USC) heat-resistance steel, which is attractive to the next generation of power plants is studied by magnetic reversible permeability. The interrelationship between reversible permeability and high-temperature mechanical degradation has been investigated by precise measurement of permeability nondestructively. Also, the effects of microstructural variation on reversible permeability are discussed. Isothermal aging was observed to coarsen the tempered carbides ($Cr_{23}C_6$), generated the intermetallic phases ($Fe_2W$), and grow rapidly during aging. The dislocation density also decreases steeply within lath interior. The peak to peak interval (PPI) of reversible permeability profile decreased drastically during the initial 500 h aging period, and was thereafter observed to decrease only slightly. The variation in PPI is closely related to the decrease in the number of pinning sites and the degradation in tensile strength.

Molecular mechanisms and therapeutic interventions in sarcopenia

  • Park, Sung Sup;Kwon, Eun-Soo;Kwon, Ki-Sun
    • Osteoporosis and Sarcopenia
    • /
    • v.3 no.3
    • /
    • pp.117-122
    • /
    • 2017
  • Sarcopenia is the degenerative loss of muscle mass and function with aging. Recently sarcopenia was recognized as a clinical disease by the International Classification of Disease, 10th revision, Clinical Modification. An imbalance between protein synthesis and degradation causes a gradual loss of muscle mass, resulting in a decline of muscle function as a progress of sarcopenia. Many mechanisms involved in the onset of sarcopenia include age-related factors as well as activity-, disease-, and nutrition-related factors. The stage of sarcopenia reflecting the severity of conditions assists clinical management of sarcopenia. It is important that systemic descriptions of the disease conditions include age, sex, and other environmental risk factors as well as levels of physical function. To develop a new therapeutic intervention needed is the detailed understanding of molecular and cellular mechanisms by which apoptosis, autophagy, atrophy, and hypertrophy occur in the muscle stem cells, myotubes, and/or neuromuscular junction. The new strategy to managing sarcopenia will be signal-modulating small molecules, natural compounds, repurposing of old drugs, and muscle-specific microRNAs.

Sensitivity Analysis of Parameters Affecting Seismic Response for RC Shear Wall with Age-Related Degradation (경년열화된 철근콘크리트 전단벽의 지진응답에 영향을 미치는 변수들의 민감도분석)

  • Park, Jun-Hee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • After a concrete is poured, reinforced concrete structures were distressed by physical and chemical factor over time. It is in need to define important variables related to structural behavior for effectively conducting seismic analysis of structures with age-related degradation. In this study, a sensibility analysis using the first-order second moment method was performed to analyze an important variables for the reinforced concrete shear wall with age-related degradation. Because the seismic capacity of aging structures without a concrete hardening effect can be underestimated, the sensibility of analysis variables was analyzed according to the concrete hardening. Important variables for RC shear wall with age-related degradation was presented by using the tornado diagram.

Relationship Between Properties Degradation and Critical Aging Time of Super Austenitic and Duplex Stainless Steels

  • S. H. Choi;Y. R. Yoo;S. Y. Won;G. B. Kim;Y. S. Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.330-340
    • /
    • 2023
  • The objective of this study was to analyze effects of aging time on property degradation of super austenitic stainless steel of PRE 52.8 and super duplex stainless steel of PRE 48.7. To analyze corrosion properties based on aging time, a critical pitting temperature test was performed in a solution of 6% FeCl3 + 1% HCl and an anodic polarization test was performed in deaerated 0.5N HCl + 1N NaCl solution at a temperature of 50 ℃. Surface hardness was measured to analyze mechanical properties. It was found that corrosion properties and mechanical properties deteriorated rapidly as aging time increased. Critical pitting temperature had the most effect on critical aging time at which property changes occurred rapidly, followed by pitting potential and hardness. This trend was found to be closely related to the fraction of sigma phase. Rate of sigma phase formation was found to be significantly faster in duplex stainless steel than in austenitic stainless steel.