Sensitivity Analysis of Parameters Affecting Seismic Response for RC Shear Wall with Age-Related Degradation

경년열화된 철근콘크리트 전단벽의 지진응답에 영향을 미치는 변수들의 민감도분석

  • 박준희 (한국원자력연구원 종합안전평가부) ;
  • 전영선 (한국원자력연구원 종합안전평가부) ;
  • 최인길 (한국원자력연구원 종합안전평가부)
  • Received : 2011.06.28
  • Accepted : 2011.07.25
  • Published : 2011.08.31

Abstract

After a concrete is poured, reinforced concrete structures were distressed by physical and chemical factor over time. It is in need to define important variables related to structural behavior for effectively conducting seismic analysis of structures with age-related degradation. In this study, a sensibility analysis using the first-order second moment method was performed to analyze an important variables for the reinforced concrete shear wall with age-related degradation. Because the seismic capacity of aging structures without a concrete hardening effect can be underestimated, the sensibility of analysis variables was analyzed according to the concrete hardening. Important variables for RC shear wall with age-related degradation was presented by using the tornado diagram.

철근콘크리트 구조물은 타설 후 시간이 경과함에 따라 물리적인 요인과 화학적인 요인으로 인하여 열화가 진행된다. 열화된 구조물의 효율적인 구조해석을 수행하기 위하여 구조물의 거동과 밀접한 관련이 있는 중요열화변수를 정의하는 것은 필요하다. 본 연구에서는 경년열화된 철근콘크리트 전단벽의 중요변수를 분석하기 위하여 일계이차모멘트법을 이용하여 민감도해석을 수행하였다. 콘크리트의 경화현상을 고려하지 않을 경우 구조물의 열화성능이 과소평가될 수 있으므로 콘크리트의 경화에 따른 해석변수들의 민감도를 분석하였다. 열화된 전단벽에서 변수의 중요도는 토네이도 다이어그램으로 나타내었다.

Keywords

References

  1. 양영순, 이재욱 (2001) 확률론적 구조설계 최적화기법에 대한 비교연구, 한국전산구조공학회 논문집, 14(2), pp.213-224.
  2. Auyeung, Y., Balaguru, P., Chung, L. (2000) Bond Behavior of Corroded Reinforcement bars, ACI. Materior Journal, 97, pp.214-220.
  3. Berto, L., Vitaliani, R., Saetta, A., Simioni, P. (2009) Seismic Assessment of Existing RC Structures Affected by Degradation Phenomena, Structural Safety, 31, pp.284-297. https://doi.org/10.1016/j.strusafe.2008.09.006
  4. Braverman, J.I., Miller, C.A., Ellingwood, B.R, Naus, D.J. Hofmayer, C.H., Shteyngart, S., Bezler, P. (2001) Probability Based Evaluation of Degraded Reinforced Components in Nuclear Power Plants, NUREG/CR-6715, Brookhaven National Laboratory.
  5. Cabrera, J.G. (1996) Deterioration of Concrete Due to Reinforcement Steel Corrosion, Cement & Concrete Composites, 18, pp.47-59. https://doi.org/10.1016/0958-9465(95)00043-7
  6. Choe, D.E., Gardoni, P., Rosowsky, D., Haukaas, T. (2008) Probabilistic Capacity Models and Seismic Fragility Estimates for RC Columns subject to Corrosion, Reliability Engineering and System Safety, 93, pp.383-393. https://doi.org/10.1016/j.ress.2006.12.015
  7. Du, Y. (2001) Effect of Reinforcement Corrosion on Structural Concrete Ductility, PhD thesis, University of Birmingham, UK.
  8. Enright, M.P., Frangopol, D.M. (1998) Probabilistic Analysis of Resistance Degradation of Reinforced Concrete Bridge Beams under Corrosion, Engineering Structures, 20, pp.960-971. https://doi.org/10.1016/S0141-0296(97)00190-9
  9. Lee, T.H., Mosalam, K.M. (2006) Probabilistic Seismic Evaluation of Reinforced Concrete Structural Components and Systems, PEER Report, 2006/04.
  10. Sobhani, J., Ramezanianpour, A.A. (2007) Chlorideinduced Corrosion of RC Structures, AJCE, 8(5), pp.531-547.
  11. Oland, C.B., Naus, D.J. (2009) Structural Materials Handbooks, Oak Ridge National Laboratory.
  12. Naus, D.J. (2006) Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors, NUREG/CR-6927.
  13. Neville, A.M. (1995) Properties of Concrete, Prentice Hall, Essex, England, pp.563-569.
  14. Melchers, R.E. (1999) Structural Reliability Analysis and Prediction, Wiley, Chichester.