• Title/Summary/Keyword: Aging heat treatment

Search Result 313, Processing Time 0.027 seconds

The Effect of Thermomechanical Treatment on the Microstructural Changes and Fatigue Properties in 7050 Al Alloy (7050 AI 합금의 가공열처리가 미세조직변화와 피로성질에 미치는 영향)

  • Kim, M.H.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.24-33
    • /
    • 1991
  • The effects of thermomechanical treatments on microstructure and fatigue properties of 7050 Al alloy were investigated. The precipitation kinetics changed to a faster rate due to cold deformation employed in this special TAHA thermomechanical treatments including pre-aging, plastic deformation and two step final-aging. The G.P. zones in the under-aged condition were cut by dislocations and dissolved during the plastic deformation. During the low cycle fatigue, the T6' condition showed cyclic hardening behavior whereas the TMT5, TMT27 and T76 conditions showed cyclic softening at above 0.7% total strain amplitudes. The ${\Delta}K_{th}$ value of TMT27 was improved more than two times, compared with that of T76 condition. The T6' with small shearable precipitates resulted in the markedly high ${\Delta}K_{th}$ value. This is thought to be resulted from dislocation reversibility and roughness-induced crack closure due to planarity of slip.

  • PDF

Microstructure and Fracture Path of Cr-Mn-N Steel upon Aging Treatment

  • Lee, Se-Jong;Sung, Jang-Hyun;Ralls, K.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.21-30
    • /
    • 1991
  • Microstructural analysis was conducted to observe the effect of aging treatments in a Cr-Mn austenitic stainless steel containing nitrogen, and the amount, size, shape and distribution of precipitates were investigated. It was found that on water quenching from $1000^{\circ}C$ after holding 3 h at that temperature, the steel contained no precipitates observable by optical microscopy. Precipitation of phases begins at places most favorable for the formation of nuclei-in the boundaries of grains and twins. Precipitates were studied in detail by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Chemical compositions of precipitates were examined by the use of scanning transmission electron microscopy (STEM) together with an energy dispersive X-ray (EDX) microanalysis. Also chromium depletion adjacent to grain boundary precipitates was investigated by the use of Auger electron spectroscopy (AES) for a direct examination of the fracture surface chemistry.

  • PDF

The Effect of Ausforming Process on Mechanical Properties of Ultrahigh Strength Secondary Hardening Martensitic Steels (극초고강도 이차경화형 마르텐사이트강의 기계적성질에 미치는 오스포밍 공정의 영향)

  • Kim, S.B.;Won, Y.J.;Song, Y.B.;Cho, K.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.179-184
    • /
    • 2021
  • Two types of secondary hardening martensitic steels, 10Co-14Ni and 6Co-5Ni, were produced by vacuum induction melting to investigate the effect of ausforming process on mechanical properties. According to the results of present study, the alloy samples ausformed at low temperature indicated a rather low hardness level in overall aging time despite the refinement of martensite lath width. As the result can closely be related with the presence of primary carbides precipitated within the initial austenite matrix, we confirmed that, in ultrahigh strength secondary hardening martensitic alloy steels, the ausforming process can rather limit the degree of secondary hardening during the subsequent aging treatment.

The Effect of Solution Heat Treatment and Aging Treatment on the Mechanical Properties of Backward Extruded A6061 Alloy for Pressure Vessels (고압용기로 사용되는 후방압출된 알루미늄 6061합금의 기계적 특성에 미치는 용체화처리 및 시효처리의 영향)

  • Kwon, Eui Pyo;Woo, Kee Do;Moon, Min Seok;Kang, Duck Soo;Nam, Gung Cheon;Yoo, Gye Hyoung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.175-181
    • /
    • 2009
  • Mechanical properties and precipitation behavior of backward extruded 6061 Al alloy for pressure vessel were investigated using tensile test, transmission electron microscopy (TEM) and differential scanning calorimeter (DSC). In this study, solution heat treatment (SHT) was performed at $535^{\circ}C$ for 30~90 min and aging treatment was conducted at 177 and $190^{\circ}C$ for 1~7 h. Maximum tensile strength of $36.6kgf/mm^2$ and yield strength of $33.29kgf/mm^2$ were achieved at the aging time of 5 h at $190^{\circ}C$. TEM observation showed that fine needle-like ${\beta}^{{\prime}{\prime}}$ phase which has 35~45 nm of length was uniformly distributed in the aged 6061 Al alloy specimen. From tensile test, TEM and DSC analysis, it is expected that aging time of 2~5 h at $190^{\circ}C$ is suitable for the extruded A6061 used as pressure vessels.

Precipitation Behavior of Laves Phase in 10%Cr Ferrite System Alloy (10%Cr 페라이트계 합금에서 라베스상의 석출거동에 관한 연구)

  • Kim, I.S.;Kang, C.Y.;Bae, D.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • The present study were investigated changes of precipitation behaviour of laves phase in ferrite single phase and ferrite-martensite dual phase and precipitation of laves phase under stress. Hardness changes in ferrite phase appeared two hardness peaks by precipitation of initial fine precipitator and laves phase in 3Mo-0.3Si and 3Mo-0.3Si-C specimens, respectively. Hardness changes in martensite phase of 3Mo-0.3Si-C specimen was lower in the initial stage of aging by carbide precipitation and after this, increased by re-hardening due to precipitation of laves phase. In the ferrite phase, laves phase was mainly precipitated, whereas in the martensite phase, carbide was preferentially formed during the initial stage of aging and with increasing aging time, laves phase and carbide were simultaneously precipitated by precipitation of laves phase at around carbide. In the ferrite-martensite interface, laves phase was mainly precipitated and carbide was mainly formed at boundary of lath martensite than grain boundary. Adding the stress in aging, fine precipitator of inital precipitation of laves phase precipitated in (100) of perpendicular to tensile direction and has grown to only followed<010>direction and also, volume fraction of laves phase increased. Consequently, the stress added was accelerated initial precipitation of laves phase.

  • PDF

Aging Effect of Magnetic Properties in Amorphous $Fe_{78}B_{13}Si_9$ Alloy (비정질 $Fe_{78}B_{13}Si_9$ 합금의 자기적 특성의 경년 열화)

  • Kim, Ki-Uk;Min, Bog-Ki;Song, Jae-Sung;Hong, Jin-Wan;Cho, Hyun-Jin;Lee, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.05a
    • /
    • pp.49-51
    • /
    • 1988
  • The heat treatment condition and aging behavior of melt spun amorphous $Fe_{78}B_{13}Si_9$(Metglas 26058-2) were studied with investigating its magnetic properties, i.e., Br, $B_l$, Hc. The optimum heat treatment condition was $400^{\circ}C$, 1 hour under the external field of 200e, and aging was due to the surface oxidation and the appearance of local CSRO (chemical short lange order) with time and temperature. In addition. we investigated the effects of the thickness of the amorphous ribbons on the magnetic properties and aging effect of them.

  • PDF

Effects of Al Content on Microstructure and Hardness of Discontinuous Precipitates Formed by Isothermal Aging in Mg-Al Alloys (Mg-Al 합금에서 등온 시효로 생성된 불연속 석출물의 미세조직과 경도에 미치는 Al 함량의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.287-293
    • /
    • 2021
  • This study was intended to investigate the influence of Al content on hardness and microstructural characteristics of discontinuous precipitates (DPs) formed by isothermal aging in Mg-8.7%Al and Mg-10%Al alloys. In order to obtain large amount of DPs in the microstructure, the alloy specimens were solution-treated at 688K for 24 h followed by water quenching, and then aged at 418K for 48h. The Mg-Al alloy with higher Al content was characterized by higher volume fraction of DPs at the same aging condition, lower interlamellar spacing of the DPs, thinner β phase layer and higher β phase content in the DPs. This is closely related to the higher velocity of discontinuous precipitation process resulting from the higher Al supersaturation in the α-(Mg) matrix. The Mg-10%Al alloy showed higher hardness of the DPs and greater difference in hardness between as-cast state and DPs than the Mg-8.7%Al alloy.

Effect of Heat Treatment on Mechanical Reliability of Solder Joints in LED Package (LED 패키지 솔더 접합부의 기계적 신뢰성에 미치는 열처리의 영향)

  • Ko, Min-Kwan;Ahn, Jee-Hyuk;Lee, Young-Chul;Kim, Kwang-Seok;Yoon, Jeong-Won;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • We studied the effect of heat treatment on the microstructures and mechanical strength of the solder joints in the Light Emitting Diode (LED) packages. The commercial LED packages were mounted on the a flame resistance-4 (FR4) Printed Circuit Board (PCB) in the reflow process, and then the joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 hours, respectively. After the heat treatment, we measured the shear strength of the solder joints between the PCB and the LED packages to evaluate their mechanical property. We used Pb-free Sn-3.0Ag-0.5Cu solder to bond between the LED packages and the PCBs using two different surface finishes, Electroless Nickel-Immersion Gold (ENIG) and Electroless Nickel-Electroless Palladium-Immersion Gold (ENEPIG). The microstructure of the solder joints was observed by a scanning electron microscope (SEM). (Cu,Ni)6Sn5 intermetallic compounds (IMCs) formed between the solder and the PCB, and the thickness of the IMCs was increased with increasing aging time. The shear strength for the ENIG finished LED package increased until aging for 300 h and then decreased with increasing aging time. On the other hand, in the case of an ENEPIG finished LED package, the shear strength decreased after aging for 500 h.

Effect of Tungsten Contents and Heat Treatment on the Microstructures and Mechanical Properties of Hastelloy C-276 Alloy Investment Castings (정밀주조 Hastelloy C-276 합금의 미세조직과 기계적 성질에 미치는 W 함량과 열처리의 영향)

  • Yoo, Byung-Ki;Park, Heung-Il;Bae, Cha-Hurn;Kim, Sung-Gyoo;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.37 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • The effects of W content and heat treatment on the microstructure and mechanical properties of Hastelloy C-276 alloy investment castings were discussed. As the W content was increased, dendritic microstructure was refined and network type precipitate formed during solidification was distributed on the dendritic grain boundaries. Cr, Fe and Mn were highly segregated in the Ni-based dendrite matrix, and Mo, W, C and Si were in the precipitates. Due to the heat treatment, fine granular and flake precipitates were newly formed in the matrix, and unresolved network type precipitates remained on the grain boundary. The network type precipitates and the granular and flake precipitates formed by heat treatment were confirmed to be ${\mu}$ phase intermetallic compounds with similar compositions. Due to the increase of the W content and the heat treatment, hardness and tensile strength were significantly increased. However, tensile strength after aging treatment was decreased with the W content. These results can be explained in that brittle fracturing by the unresolved network type precipitates dispersed in the grain boundary was predominant over ductile fracturing by the dimple ruptures originating from the fine granular precipitates in the matrix.

Effect of Heat Treatment on Joint Strength of 300Grade 18% Ni Maraging Steel Sheet Welded with Electron Beam (전자비임 용접된 300Grade 18% Ni 마르에이징강 박판의 이음강도에 미치는 열처리의 방향)

  • Jung, B.H.;Kim, H.G.;Kang, S.B.;Kim, W.Y.;Park, H.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.185-193
    • /
    • 1993
  • The effect and Condition of heat treatment on the tensile strength of welded joint was investigated in 300 grade 18% Ni-Co-Mo-Ti maraging steel sheets welded with electron beam. A good tensile strength of welded joint was obtained by following heat treatment cycle ; At $1100^{\circ}C$ the specimen was high temperature solution treated for 1 hour and then it was repeated solution treated at $900^{\circ}C$, $820^{\circ}C$ for 1 hour respectively to recrystallize the coarsened ${\gamma}$ grain. These heat treatment cycle was completed by an final aging heat treatment at $480^{\circ}C$ for 4 hour. Moreover, dissolution of dendrite, a significant decrease in seregation of Mo, Ti in weld metal were observed and also the coarsened ${\gamma}$ grain formed at $1100^{\circ}C$, $1200^{\circ}C$ changed to fine grain due to the effect of recrystallization.

  • PDF