The analysis of digital microscopy images plays a vital role in computer-aided diagnosis (CAD) and prognosis. The main purpose of this paper is to develop a machine learning technique to predict the histological grades in prostate biopsy. To perform a multiclass classification, an AI-based deep learning algorithm, a multichannel convolutional neural network (MCCNN) was developed by connecting layers with artificial neurons inspired by the human brain system. The histological grades that were used for the analysis are benign, grade 3, grade 4, and grade 5. The proposed approach aims to classify multiple patterns of images extracted from the whole slide image (WSI) of a prostate biopsy based on the Gleason grading system. The Multichannel Convolution Neural Network (MCCNN) model takes three input channels (Red, Green, and Blue) to extract the computational features from each channel and concatenate them for multiclass classification. Stain normalization was carried out for each histological grade to standardize the intensity and contrast level in the image. The proposed model has been trained, validated, and tested with the histopathological images and has achieved an average accuracy of 96.4%, 94.6%, and 95.1%, respectively.
Oh, Sung Hoon;Jeon, Young Jun;Kwon, Young Woo;Jeong, Seok Chan
The Journal of Bigdata
/
v.6
no.1
/
pp.37-49
/
2021
The number of dementia patients in Korea is estimated to be over 800,000, and the severity of dementia is becoming a social problem. However, no treatment or drug has yet been developed to cure dementia worldwide. The number of dementia patients is expected to increase further due to the rapid aging of the population. Currently, early detection of dementia and delaying the course of dementia symptoms is the best alternative. This study presented a methodology for early diagnosis of dementia by measuring and analyzing amyloid plaques. This vital protein can most clearly and early diagnose dementia in the retina through AI-based image analysis. We performed binary classification and multi-classification learning based on CNN on retina data. We also developed a deep learning algorithm that can diagnose dementia early based on pre-processed retinal data. Accuracy and recall of the deep learning model were verified, and as a result of the verification, and derived results that satisfy both recall and accuracy. In the future, we plan to continue the study based on clinical data of actual dementia patients, and the results of this study are expected to solve the dementia problem.
Background and Purpose: Magnetic resonance imaging (MRI) helps with brain development analysis and disease diagnosis. Brain volumes measured from different ages using MRI provides useful information in clinical evaluation and research. Therefore, we trained machine learning models that predict the brain age gap of healthy subjects in the East Asian population using T1 brain MRI volume images. Methods: In total, 154 T1-weighted MRIs of healthy subjects (55-83 years of age) were collected from an East Asian community. The information of age, gender, and education level was collected for each participant. The MRIs of the participants were preprocessed using FreeSurfer(https://surfer.nmr.mgh.harvard.edu/) to collect the brain volume data. We trained the models using different supervised machine learning regression algorithms from the scikit-learn (https://scikit-learn.org/) library. Results: The trained models comprised 19 features that had been reduced from 55 brain volume labels. The algorithm BayesianRidge (BR) achieved a mean absolute error (MAE) and r squared (R2) of 3 and 0.3 years, respectively, in predicting the age of the new subjects compared to other regression methods. The results of feature importance analysis showed that the right pallidum, white matter hypointensities on T1-MRI scans, and left hippocampus comprise some of the essential features in predicting brain age. Conclusions: The MAE and R2 accuracies of the BR model predicting brain age gap in the East Asian population showed that the model could reduce the dimensionality of neuroimaging data to provide a meaningful biomarker for individual brain aging.
Journal of Korean Tunnelling and Underground Space Association
/
v.23
no.4
/
pp.253-263
/
2021
Concrete structures are damaged by aging and external environmental factors. This type of damage is to appear in the form of cracks, to proceed in the form of spalling. Such concrete damage can act as the main cause of reducing the original design bearing capacity of the structure, and negatively affect the stability of the structure. If such damage continues, it may lead to a safety accident in the future, thus proper repair and reinforcement are required. To this end, an accurate and objective condition inspection of the structure must be performed, and for this inspection, a sensor technology capable of detecting damage area is required. For this reason, we propose a deep learning-based image processing algorithm that can detect spalling. To develop this, 298 spalling images were obtained, of which 253 images were used for training, and the remaining 45 images were used for testing. In addition, an improved loss function and data augmentation technique were applied to improve the detection performance. As a result, the detection performance of concrete spalling showed a mean intersection over union of 80.19%. In conclusion, we developed an algorithm to detect concrete spalling through a deep learning-based image processing technique, with an improved loss function and data augmentation technique. This technology is expected to be utilized for accurate inspection and diagnosis of structures in the future.
Journal of the Korea institute for structural maintenance and inspection
/
v.26
no.5
/
pp.30-42
/
2022
Due to the increase in construction of tunnels, the burdens of maintenance works for tunnel structures have been increasing in Korea. In addition, the increase of traffic volume and aging of materials also threatens the safety of tunnel facilities, therefore, maintenance costs are expected to increase significantly in the future. Accordingly, automated condition assessment technologies like image-based tunnel scanning system for inspection and diagnosis of tunnel facilities have been proposed. For image-based tunnel scanning system, it is key to create a planar image through stitching of multiple images captured by tunnel scanning system. In this study, performance of feature-based stitching algorithms suitable for stitching tunnel scanning images was evaluated. In order to find a suitable algorithm SIFT, ORB, and BRISK are compared. The performance of the proposed algorithm was determined by the number of feature extraction, calculation speed, accuracy of feature matching, and image stitching result. As for stitching performance, SIFT algorithm was the best in all parts of tunnel image. ORB and BRISK also showed satisfactory performance and short calculation time. SIFT can be used to generate precise planar images. ORB and BRISK also showed satisfactory stitching results, confirming the possibility of being used when real-time stitching is required.
Park, Jun-Young;Shin, Jun-Sik;Won, Jong-Bin;Park, Jong-Woong;Park, Min-Yong
Journal of the Computational Structural Engineering Institute of Korea
/
v.34
no.5
/
pp.301-308
/
2021
It is important to develop a digital SOC (Social Overhead Capital) maintenance system for preemptive maintenance in response to the rapid aging of social infrastructures. Abnormal signals induced from structures can be detected quickly and optimal decisions can be made promptly using IoT sensors deployed on the structures. In this study, a digital SOC monitoring system incorporating a multimetric IoT sensor was developed for long-term monitoring, for use in cloud-computing server for automated and powerful data analysis, and for establishing databases to perform : (1) multimetric sensing, (2) long-term operation, and (3) LTE-based direct communication. The developed sensor had three axes of acceleration, and five axes of strain sensing channels for multimetric sensing, and had an event-driven power management system that activated the sensors only when vibration exceeded a predetermined limit, or the timer was triggered. The power management system could reduce power consumption, and an additional solar panel charging could enable long-term operation. Data from the sensors were transmitted to the server in real-time via low-power LTE-CAT M1 communication, which does not require an additional gateway device. Furthermore, the cloud server was developed to receive multi-variable data from the sensor, and perform a displacement fusion algorithm to obtain reference-free structural displacement for ambient structural assessment. The proposed digital SOC system was experimentally validated on a steel railroad and concrete girder bridge.
Journal of the Korea institute for structural maintenance and inspection
/
v.26
no.6
/
pp.175-181
/
2022
The condition of infrastructure deteriorates as the service life increases. Since most infrastructure in South Korea were intensively built during the period of economic growth, the proportion of outdated infrastructure is rapidly increasing now. Aging of such infrastructure can lead to safety accidents and even human casualties. To prevent these issues in advance, periodic and accurate inspection is essential. For this reason, the need for research to detect various types of damage using computer vision and deep learning is increasingly required in the field of remotely controlled or autonomous inspection. To this end, this study proposed a neural network structure that can detect concrete damage by classifying it into three types. In particular, the proposed neural network can detect them more accurately through a hierarchical learning technique. This neural network was trained with 2,026 damage images and tested with 508 damage images. As a result, we completed an algorithm with average mean intersection over union of 67.04% and F1 score of 52.65%. It is expected that the proposed damage detection algorithm could apply to accurate facility condition diagnosis in the near future.
Journal of the Korean Recycled Construction Resources Institute
/
v.12
no.1
/
pp.63-71
/
2024
Through the development of construction technology, various construction projects such as redevelopment projects, undergrounding of roads, expansion of subways, and metro railways are being carried out. However, this has led to an increase in the number of construction projects in existing urban centers and neighborhoods, resulting in an increase in the number of damages and disputes between neighboring buildings and residents, as well as an increase in safety accidents due to the aging of existing buildings. In this study, digital data was applied to a graphics program to objectify the progress of cracks by comparing the creation of cracks and the increase in length and width through photographic images and presenting the degree of cracks numerically. Through the application of the program, the error caused by the subjective judgment of crack change, which was mentioned as a shortcoming of the existing field survey, was solved. It is expected that the program can be used universally in the building diagnosis process by improving its reliability if supplemented and improved in the process of use. As a follow-up study, it is necessary to apply the extraction algorithm of the digital graphic data program to calculate the length and width of the crack by itself without human intervention in the preprocessing work and to check the overall change of the building.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.