• Title/Summary/Keyword: Aging Property

Search Result 330, Processing Time 0.022 seconds

The Influence of E-beam Irradiation on POLY(ETHER-BLOCK-AMIDE) (PEBA, Pebax) (전자 빔 조사후 PEBA (Poly Ether Block Amide)의 구조 및 기계적 특성 변화)

  • Shin, Sukyoung;Cho, SangGyu
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.205-209
    • /
    • 2014
  • Medical polymers require sterilization and must be able to maintain material properties for a specified shelf life. Sterilization can be achieved by using gamma or e-beam exposure. In this study, accelerated aging tests of poly(ether-block-amide) (PEBA) copolymer samples is presented. PEBA copolymer samples with different polyether content that result in Shore hardness of 35D to 72D, were sterilized using e-beam radiation followed by accelerated aging at $55^{\circ}C$. E-beam sterilization effect on molecular weight and mechanical property has performed and analyzed. The average molecular weight significantly reduced as a result of ageing. The enlarged proportion of low molecular weight chains in the aged samples is consistent with the generation of degradation products produced by oxidative chain scission. Also E-beam materials have shown decreased tensile strength and elongation. Overall, this study demonstrated that the medical grade PEBA was significantly affected by radiation exposure over aging time, particularly at high irradiation doses. For medical use in case of radiation sterilization required, it is recommended to avoid Pebax material. If Pebax material must be in use for medical device, recommend to use alternate sterilization method such as Ethylene Oxide sterilization.

Study on Physiologically Active Compounds and Antioxidant Activity of Korean Yam (Dioscorea batatas DECNE.)

  • Duan, Yishan;Kim, Gyeong-Hwuii;Kim, Han-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.342-351
    • /
    • 2016
  • The bioactive compound and antioxidant property of Korean yam (Dioscorea batatas DECNE.) were studied using in vitro methods. Yam available in Korea was analyzed for lycopene, chlorophyll a, b, tannin, phytic acid and total saponin contents. 70% Methanol, 70% ethanol and chloroform-methanol mixture (CM, 2:1, v/v) were used to extract yam. Then the antioxidant activity evaluated through ferrous ion chelating activity, ${\beta}$-carotene bleaching method, lipid peroxidation inhibition and nitric oxide (NO) radical scavenging activity. 70% Methanol extract showed the highest ferrous ion chelating activity and NO radical scavenging activity. And CM extract was the most effective in inhibition of linoleic acid peroxidation evaluated by ${\beta}$-carotene bleaching assay and lipid peroxidation inhibition assay. Based on the results obtained, yam is a potential active ingredient that could be applied in antioxidation as well as bio-health functional food to take a good part in prevention of human diseases and aging.

Evaluation of High Temperature Tensile Properties in GTD-111DS (GTD-111DS 소재의 고온 인장 특성 평가)

  • Park H.S.;Kim H.I.;Lee Y.M.;Seok C.S.;Kim M.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1358-1362
    • /
    • 2005
  • The Ni-base superalloy GTD-111DS was designed in the 1970s and is widely used as the material of the first stage blade under a severe combination of temperature and pressure in gas turbines. But because GTD-111DS is distributed in the shape of blade and blade has a unique figure and many cooling channels, it is hard to manufacture the test specimen. In this reason, there are little data on the microstructure and mechanical properties of the alloy. Therefore through the microstructure analysis, present paper observed that the shape of $\gamma{'}$ did not change even if aging time was increased but the amount and volume of the deposition of secondary $\gamma{'}\;rose\;and\;secondary\;\gamma{'}\;grew\;among\;primary\;\gamma{'}$. Also, by tensile test for different temperature, there was difference between yield strength and tensile strength in room temperature on heat treatment and extracting region but the more increasing temperature, the more decreasing difference between yield strength and tensile strength.

  • PDF

Evaluation about Dielectric Property of Heat Transfer Fluids for Fuel Cell Vehicle using Cylindrical Multi-Terminal Capacitive-Conductive Sensor (원통형 다전극식 정전용량-전기전도도 센서를 이용한 연료전지 차량용 냉각수의 유전특성 평가)

  • Kim, Jae-Hoon;Kim, Ju-Han;Kim, Yoon-Hyung;Choi, Kang-Wal;Han, Sang-Ok;Yong, Gee-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1087-1094
    • /
    • 2010
  • We have developed a cylindrical multi-terminal capacitive-conductive sensor that could be attached to the internal surface of cooling system pipe to evaluate capacitance and conductivity of heat transfer fluid. It was used as measuring system to diagnose insulating condition, by which was kept a insulating resistance of inner stack and at the same time was cooled electrochemical heat of reaction of FCEV(fuel cell electric vehicle) stack that used a compressed hydrogen gas reacting with oxygen in accordance with variation on thermal degradation of nonconductive heat transfer fluid. Also to assess diagnosis characteristics of heat transfer fluid, i.e. coolant, we have performed accelerated aging test using developed sensor attached to cooling system. Consequently, it was measured dielectric and electric resistance of coolant to estimate and analyse for dielectric properties by degradation condition.

Preparation and Evaluation of Cubic Liquid Crystalline Phase Gel and Cubosome containing Polyethoxylated Retinamide (폴리에톡시레이티드레틴아마이드를 함유한 입방상 액정 젤 및 큐보좀의 제조 및 평가)

  • Kyong, Kee-Yeol;Jee, Ung-Kil;Cho, Wan-Goo
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.2
    • /
    • pp.85-94
    • /
    • 2007
  • The objective of this study is to prepare a stable delivery systems containing polyethoxylated retinamide(PERA) - derivatives of retinoic acid, effective anti-wrinkle and anti-acne agent. Cubic liquid crystalline phase gel (CLCPG) and cubosomes containing various concentrations of PERA were prepared to investigate the physicochemical properties. Furthermore, stability and transdermal absorption efficacy of the CLCPG containing PERA were investigated in comparison with oil-in-water (O/W) emulsions which are predominantly used as a topical formulation. CLCPG increase the stability of PERA in comparison with O/W emulsion. For tropical application, CLCPG containing PERA shows higher moisturizing effect than that of O/W emulsion. In skin permeation test, CLCPG shows higher PERA deposit on epidermis. With its specific physicochemical property caused by the glyceryl oleate, CLCPG itself could be used for stabilizer of various actives and applied as an effective delivery system for topical application. Cubosome, nano-sized dispersed CLCPG, is also expected to be applied in a various field of industry like food, cosmetics and pharmaceuticals.

Environmental Effect of the Coffee Waste and Anti-Microbial Property of Oyster Shell Waste Treatment

  • Thenepalli, Thriveni;Ramakrishna, Chilakala;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.39-49
    • /
    • 2017
  • Coffee is one of the most popular and consumed beverages in the world, which leads to a high contents of solid residue known as spent coffee grounds (SCG). As is known, coffee beans contain several classes of health related chemicals, including phenolic compounds, melanoidins, diterpenes, xanthines and carotenoids. The waste water coming out of coffee industries has high concentration of organic pollutants and is very harmful for surrounding water bodies, human health and aquatic life if discharged directly into the surface waters. Hence it is essential to treat and manage the coffee waste. Oyster shells are a waste product from mariculture that creates a major disposal problem in coastal regions of southeast Korea. In the study, the oyster shell waste was used to treat the coffee waste and its effluents. Oyster shells are calcined at $1000^{\circ}C$ for 2 h, and allowed to test the calcined CaO powder ability to inhibit the growth of bacteria in different aging coffee wastes. Calcined oyster shell powder showed anti-bacterial effect that inhibited cell growth of Escherichia coli and other bacterial forms. The antimicrobial activity of calcium oxide from oyster shell waste for biological treatment and utilization as a fertilizers with economic ecofriendly in nature.

Analysis on Electrical Tree Growth Characteristics in XLPE According to Crosslinked Degree (XLPE의 가교도 분포에 따른 전기트리 진전 특성 분석)

  • Kim, Sang-Ki;Kim, Dcuk-Keun;Lee, Jeong-Bin;Lee, Jin;Kim, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.901-903
    • /
    • 1998
  • Crosslinked Degree is an important factor to determine dielectric property of crosslinked polyethylene(XLPE) used for the insulation material in power cables. Recently, though it is necessary to investigate electrical properties according to crosslinked degree as a part of the whole characterization of cable. it is not examined closely. In this study, crosslinked degree of samples were measured according to temperature and holding time of crosslinking, electrical tree characteristics of these samples were analyzed by crosslinked degree and applied temperature that was changed from normal temperature to operating temperature of power cables. As a result. when the crosslinked degree was low, dielectric properties were decreased and influence of temperature was increased. but the crosslinked degrees were high. initiation voltages of treeing were increased and dielectric properties were improved. It is proved that the optimum. crosslinked degree was one of most important factor for aging time and residual lifetime of power cable.

  • PDF

Synthesis, Curing and Properties of Silicone-Epoxies

  • Huang, Wei;Yuan, Youxue;Yu, Yunzhao
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.39-44
    • /
    • 2006
  • A new kind of silicone-epoxy composite is reported in this research. The silicone-epoxy resin was synthesized by the hydrosilylation of tetramethycyclotetrasiloxane and 4-vinyl-1-cyclohexene 1,2-epoxy with a high reaction yield. It was found that the obtained silicone-epoxy resin shows a high reactive activity to the aluminum complex-silanol catalyst. The resin could be cured under the catalysis of $(Al(acac)_3/Ph_2Si(OH)_2$ at a concentration below 0.1 wt% to give a hard cured resin showing excellent optical clarity, UV resistance and thermal stability. It was also found that the Si-H groups facilitated the curing reaction and the silicone-epoxy resin bearing Si-H group could be cured effectively even if $Ph_2Si(OH)_2h$ was absent. Moreover, the UV resistance and thermal stability were improved significantly by the introduction of Si-H groups. This is possibly due to the reductive property of Si-H groups which can annihilate radical and peroxide effectively. This kind of silicone-containing epoxy composite might have very promising applications as optical resin, optical adhesive and encapsulation materials for electronic devices.

  • PDF

Study on Type of Different Polyols for Physical Properties of Polyurethane Foam Under Sea Water (해수에서 폴리올 종류가 폴리우레탄 폼의 물성에 미치는 영향)

  • Kim, Sang-Bum
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.158-163
    • /
    • 2011
  • Rigid polyurethane foam (PUF) was synthesized with different contents of aliphatic polyester polyol, aromatic polyester polyol and aliphatic polyether polyol to know change of properties under sea water. UTM(universal testing machine), DSC(differential scanning calorimetry), hardness meter and FT-IR(Fourier transform spectroscopy) were used to study the PUF`s physical properties under sea water. Compressive strength and hardness of PUF decreased with increasing the content of aromatic polyester polyol under sea water as aging. According to the results of IR spectral analysis, reduction of urethane and urea peak was found and allophanate and biuret peak increased. Although glass transition temperature of PUF increased, mechanical properties of PUF decreased under sea water, because PUF gets brittle when crosslink density increase.

Effect of Mechanical Properties by a Long Term Operation in High Capacity and Low Sag Conductor ( II ) (경년열화가 증용량 저이도 송전선의 기계적특성에 미치는 영향 (II))

  • Kim Shang-Shu;Kim Byung-Geol;Sin Goo-Yong;Lee Dong-Il;Min Byung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.100-106
    • /
    • 2006
  • Today, restricted energy sources, environmental considerations and the high cost of transporting fuel have limited the number and location of available power plant sites. The pressures resulting from these conditions have tended to require the construction of long, high-capacity, high-voltage power lines. it's used to adapt to STACIR/AW(Super Thermal-resistant Aluminum alloy Conductors, aluminum-clad Invar-Reinforced) conductor for coping with these situations. STACIR/AW conductor was formed by the combination of INVAR/AW as the core for low sag and super thermal-resistant aluminum alloy conductor for current capacity increase. increase of temperature by current capacity and long span lines make the susceptible to the deterioration of thermo-mechanical properties(conductivity, tensile strength, E-modulus and twist property et al). In the present work, changes of thermo-mechanical properties with aging have been studied in STACIR/AW $410 mm^2$ conductor with forms of single wire and strand wire.