• 제목/요약/키워드: Aggregate evaluation

검색결과 411건 처리시간 0.025초

폐미분말을 주원료로한 재생시멘트의 내구성능 평가에 관한 연구 (Studies on the durability evaluation of the Recycled Cement using Waste Cementitious Powder as Raw material.)

  • 권은희;안재철;박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.3-4
    • /
    • 2015
  • Environmental load reduction and sustainable development one of the study's research into the available material is discharged, remove the coarse aggregate and fine aggregate from waste concrete and utilizing the remaining cement fine powder as an alternative raw material for limestone is the main raw material of cement developing playback cement that was the purpose. Physical over existing research and chemical quality was confirmed was evaluated for durability by promoting carbonation test, research studies on the durability evaluation insignificant. As honipyul within the aggregate differential lung fine powder increases carbonation resistance performance've found that increased sharply and, S0 showed fairly similar to the OPC. Therefore, the development within the technology research to separate fine aggregate discharge fully differential and waste fine powder is determined to be the development and use of the playback durability of the cement with the carbonation levels corresponding to the OPC if made.

  • PDF

구조용 경량골재 개발에 따른 경량콘크리트의 동결융해특성에 관한 연구 (Property Evaluation of the Freeze-Thawing for Lightweight Concrete with Development of Structural Lightweight Aggregates)

  • 장동일;채원규;조광현;김광일;손영현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.129-136
    • /
    • 1998
  • In this study, lightweight aggregates were developed to see the possible application as a structural uses. For the evaluation purpose, several testings were conducted to compare the physical characteristics between the controlled lightweight aggregates and other lightweight aggregates purchased from different sources. The tests included property changes of fresh concrete and strength characteristics of hardened concrete for both normal and high strength ranges. In addition, a experiment was performed to analyze the freezing and thawing resistance of new lightweight aggregate concrete against other lightweight aggregate concrete against other lightweight aggregate concretes with some experimental parameters such as lightweight aggregates, curing conditions, and water-cement ratio. The test showed that the new lightweight aggregate could be used structural components. Continuous study will be planned for future evaluations.

  • PDF

초기 재령 콘크리트의 종파 속도와 강도의 상관관계 (Correlation between Longitudinal Wave Velocity and Strength of Early-aged Concrete)

  • 이휘근;이광명;김동수
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.67-74
    • /
    • 2000
  • The usage of nondestructive testing on early-aged concrete leads to enhacned safty and allows effective scheduling of construction, thus making it possible to maximize the time and cost efficiencies. In this study, a reliable nondestructive strength evaluation method for early-aged concrete using the longitudinal wave velocity is proposed. Compression tests were performed to examine factors influencing the velocity-strength relationship of concrete, such as water-cement (w/c) ratio, fine aggregate ratio, curing temperature, and curing condition. The test results show that a change in the w/c ratio and curing temperature has minor effect on the velocity-strength relationship/ However, curing condition significantly influences the velocity-strength relationship of early-aged concrete. Moreover, the longitudinal wave velocity increases with decreasing fine aggregate ratio. It is concluded from this study that the strength evaluation of early-age concrete can be achieved by a nonlinear equation which considers the effects of curing condition and fine aggregate ratio.

코어 및 비파괴 시험에 의한 재생골재 콘크리트의 압축강도 평가에 대한 실험적 연구 (An Experimental Study on the Evaluation of Compressive Strength of Recycled Aggregate Concrete by the Core and the Non-Destructive Testing)

  • 양근혁;김용석;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.133-136
    • /
    • 2005
  • Compressive strength of recycled aggregate concrete was tested by the core and by the non-destructive testing. A prediction model of compressive strength considering the replacement level of recycled aggregate was suggested by multi-regression analysis and was compared with test results. Also, Test results showed that the ratio of compressive strength by core and non-destructive testing to actual was somewhat affected by the replacement level of recycled aggregate.

  • PDF

재생골재를 사용한 구조용 콘크리트의 성능평가 (Performance Evaluation of Structural Concrete Using Recycled Aggregate)

  • 박희곤;배연기;이재삼;이영도;임남기;정상진
    • 한국건축시공학회지
    • /
    • 제7권2호통권24호
    • /
    • pp.85-92
    • /
    • 2007
  • In the past, recycled aggregate was used very limitedly in low value-added areas such as the base layer of roads. However, in response to the shortage of natural aggregate, high consciousness of resource saving and changed idea on environment, the quality of recycled aggregate has been improved considerably, and the percentage of recycled construction waste is increasing every year compared to simple landfill or incineration. Recently the Act on the Promotion of Construction Waste Recycling was enacted on December 2003 for the efficient use of recycled aggregate, and the Standards for the Quality of Recycled Aggregate for Concrete (Proposal) were announced in order to use and manage recycled aggregate according to quality. According to the Standards for the Quality of Recycled Aggregate for Concrete (Proposal), it is recommended to substitute recycled coarse aggregate and fine aggregate below 30% each. However, compared to the trend of recycling, the recycling rate of aggregate is still quite low. It is because of low performance of recycled aggregate, users' lack of understanding, etc. These problems basically come from the decrease of strength of recycled concrete resulting from the use of recycled aggregate, and recycled aggregate is still considered not reliable because there have been not many cases of actual application. If the basic problem of strength decrease is solved and data on recycled aggregate is provided through actual field placing, we may maximize the use of recycled aggregate. Thus, in order to maximize the use of recycled aggregate that satisfy the recycled aggregate quality standards, the present study made a mock-up similar to real structures, evaluated its performance and examined the field applicability of recycled aggregate concrete.

비파괴 시험에 의한 재생골재 콘크리트의 압축강도 평가 (An Evaluation of the Compressive Strength of Recycled Aggregate Concrete by the Non-Destructive Testing)

  • 정헌수
    • 한국건축시공학회지
    • /
    • 제4권4호
    • /
    • pp.63-70
    • /
    • 2004
  • The objective of this study is to evaluate the compressive strength of recycled aggregate concrete by the non-destructive testing. Main experimental variables were the replacement level of recycled aggregate and blast-furnace slag, which were divided into two series according to recycled aggregate maximum size. Test results showed that a recycled aggregate had a significant influence on the non-destructive testing results, such as rebound number, Ultrasonic pulse velocity, and frequency. A prediction model of compressive strength considering the replacement level of recycled aggregate was suggested by multi-regression analysis and was compared with test results.

현무암골재를 사용한 콘크리트의 슈미트 햄머법 비파괴 시험에 의한 강도 평가 (Evaluation of Compressive Strength of Concrete Using Aggregate of Basalt by Schmidt Hammer Testing)

  • 김상우;표대수;홍상희;이백수;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.257-262
    • /
    • 2001
  • The objective of this study is to compare compressive strength and rebound number of Schmidt hammer of concrete using basalt aggregate to that using granite aggregate. And is to provide the reference data on the standardization of nondestructive test of concrete. According to test results, compressive strength of concrete using basalt aggregate is highly estimated under the same rebound number compared to that using granite aggregate about 5~15%. It is urgently that newly suggested estimation formula of compressive strength using basalt aggregate must be prescribed because estimation formula of compressive strength of concrete using basalt aggregates overestimates the strength compared to that using granite aggregate.

  • PDF

복합이론에 의한 순환골재 콘크리트의 탄성계수 평가에 관한 기초적 연구 (A Basic Study for evaluation on the Elastic Modulus of Recycled Aggregate Concrete by using Composite Model)

  • 김현욱;김지윤;김완기;박원준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.73-74
    • /
    • 2012
  • The elastic modulus of recycled aggregate concrete (RAC) can be evaluated by using composite models with experiment. In this study, Hashin's composite model was adapted to evaluate elastic modulus considering physical properties of recycled coarse aggregate (RCA) that mortar is attached. Elastic modulus testes for cement paste, mortar and recycled coarse aggregate concrete were carried out considering W/C and recycled coarse aggregate content rate. As a result, the elastic modulus of RAC was evaluated comparing with both experiment results and the existing estimation formula. Those can be used for further studies as a preliminary data.

  • PDF

골재의 온도 변화에 따른 저발열 포틀랜드 시멘트 콘크리트의 특성 (Properties of Low Heat Portland Cement Concrete by Changing Temperature of Aggregate)

  • 조용진;박광수;신수균;원종필
    • 한국농공학회논문집
    • /
    • 제46권4호
    • /
    • pp.49-55
    • /
    • 2004
  • Properties of concrete using low heat portland cement is different from using ordinary portland cement and temperature of aggregate can be expected to have an important influence on its properties. In this study, experiment by setting up 5 levels (40, 30, 20, 4, $-2^{\circ}C$) by temperature of aggregate for evaluation properties of concrete using low heat portland cement was conducted. The experiments include slump test, air content test, change of slump, change of air content and compressive strength of concrete test. As the result of experiments, slump and air content was decreased by increasing temperature of aggregate. But it was not exceeding it's limit. Change of slump and air content was rapidly decrease by decreasing temperature of aggregate. At early age, compressive strength was influenced by the temperature of aggregate.

순환잔골재 모르타르의 염해저항성 평가 (Evaluation on Chloride Attack Resistance of Recycled Fine Aggregate Mortar)

  • 장현식;김규용;윤민호;최경철;김홍섭;이보경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.52-53
    • /
    • 2016
  • Mechanical properties and durability of recycled aggregate concrete was known to decrease due to the adhesive mortar of recycled aggregate. But in this study, As the result of chloride diffusion resistance of recycled fine aggregate mortar, the mechanical properties are reduced according to the increase of the substitute ratio of recycled fine aggregate. But the chloride diffusion coefficient was almost same with natural fine aggregate mortar.

  • PDF