• Title/Summary/Keyword: Aggregate Ratio

Search Result 1,119, Processing Time 0.028 seconds

An Experimental Study on the Physical and Mechanical Properties of Concrete Using Recycled Sand (순환잔골재를 활용한 콘크리트의 물리·역학적 특성에 관한 실험적 연구)

  • Kim, Jung-Ho;Sung, Jong-Hyun;Lee, Seung-Yeop;Kwon, Gu-Hyuk;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.359-365
    • /
    • 2017
  • This study examined concrete characteristics depending on the replacement ratio of recycled fine aggregates, which suits the KS F 2573 concrete recycled aggregate standard. As physical properties, slump, air content, changes in the elapse of time and compressive strength were studied in order to provide basic data for activation of recycled fine aggregate recycling. As a result of experimenting recycled fine aggregate concrete, the increase in the replacement ratio of recycled aggregates led to the increase in slump and air content. Also, when the replacement ratio of recycled fine aggregates was 30%, it was judged that there was no problem with constructability. When the replacement ratio was 30%, recycled fine aggregate concrete had a similar tendency to natural aggregate concrete at a compressive strength of 24MPa. When the replacement ratio was 30%, at a target strength of 24MPa, recycled fine aggregate concrete had the same physical characteristics as natural aggregate concrete. This means that a replacement ratio of 30% is appropriate for replacement of recycled fine aggregates. In future, there will be a need to improve the quality of recycled fine aggregates for activating the use of recycled fine aggregates and further research will have to evaluate physical properties of recycled fine aggregate concrete using improved recycled fine aggregates.

A Study on Chloride Diffusion in Concrete Containing Lightweight Aggregate Using Crushed Stone-powder (폐석분을 활용한 경량골재 콘크리트의 염화물 확산에 관한 연구)

  • Lee, Dae-Hyuk;Yoon, Sang-Chen;Jeong, Yong;Shin, Jae-Kyung;Jee, Nam-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.255-262
    • /
    • 2010
  • The purpose of this study is to provide preliminary data on chloride diffusion of lightweight aggregate concrete containing crushed stone-powder. Accordingly, the study performed experiments using concrete aggregates of Crushed Aggregate (CG), Single-sized Lightweight Aggregate (SLG), Continuous Graded Lightweight Aggregate (CLG), and using water-binder ratio of 0.4, 0.5, 0.6, and using binder of FA and BFS. The chloride diffusion coefficient is calculated according to the NT BUILD 492. Diffusion coefficient of SLG and CLG were higher than that of CG concrete, but the difference was not significant. Also, chloride diffusion coefficient data indicated that it was highly affected by water-binder ratio, and it decreased with the decrease in waterbinder ratio. The admixture substitution of FA15% was effective in decreasing the diffusion coefficient only with water-binder ratio of 0.4 while admixture substitution of FA10+BFS20% was effective with all levels of water-binder ratio. The result of study shows lightweight aggregate concrete containing crushed stone-powder has slightly higher chloride diffusion coefficient than CG concrete, but the difference is not significant such that it can be overcome by adjusting water-binder ratio and admixture substitution. In addition, the data indicate the chloride diffusion coefficient of lightweight aggregate concrete can be estimated from the strength of lightweight aggregate.

The behavior of concrete filled steel tubular columns infilled with high-strength geopolymer recycled aggregate concrete

  • Rajai Z. Al-Rousan;Haneen M. Sawalha
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.661-678
    • /
    • 2024
  • The utilization of geopolymer recycled aggregate concrete (GRAC) as the infilled core of the concrete-filled steel tubular (CFST) columns provides superior economic and environmental benefits. However, limited research exists within the field of geopolymer recycled aggregate concrete considered a green and sustainable material, in addition to the limitation of the design guidelines to predict the behavior of such an innovative new material combination. Moreover, the behavior of high-strength concrete is different from the normal-strength one, especially when there is another material of high-strength properties, such as the steel tube. This paper aims to investigate the behavior of the axially loaded square high-strength GRACFST columns through the nonlinear finite element analysis (NLFEA). A total of thirty-two specimens were simulated using ABAQUS/Standard software with three main variables: recycled aggregate replacement ratio (0, 30, and 50) %, width-to-thickness ratios (52.0, 32.0, 23.4, and 18.7), and length-to-width ratio (3, 5, 9, and 12). During the analysis, the response in terms of the axial load versus the longitudinal strain was recorded and plotted. In addition, various mechanical properties were calculated and analyzed. In view of the results, it has been demonstrated that the mechanical properties of high-strength GRACFST columns such as ultimate load-bearing capacity, compressive stiffness, energy absorption capacity, and ductility increase with the increase of the steel tube thickness owing to the improvement of the confinement effect of the steel tube. In contrast, the incorporation of the recycled aggregate adversely affected the mentioned properties except the ductility, while the increase of the recycled aggregate replacement ratio improved the column's ductility. Moreover, it has been found that the increase in the length-to-width ratio significantly reduced both the failure strain and the energy absorption capacity. Finally, the obtained NLFEA results of the ultimate load-bearing capacity were compared with the corresponding predicted capacities by numerous codes. It has been concluded that AISC, ACI, and EC give conservative predictions for the ultimate load-bearing capacity since the confinement effect was not considered by these codes.

Properties of Self Compacting Concrete Using Ground Granulated Blast Furnace Slag (고로슬래그미분말을 사용한 고유동콘크리트의 특성)

  • 김은겸;박천세;전찬기;이호석;최재진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.579-584
    • /
    • 2002
  • In this research, the physical properties of self compacting concrete using ground granulated blast furnace slag as a part of cement were investigated. Concrete using ground granulated blast furnace slag was prepared with various ground granulated blast furnace slag replacement(20~80 volume %) for cement and the quantities of coarse aggregate in concrete were 50%, 55% and 60% of ratio of absolute volume of coarse aggregate. The workability, flowing characteristics, air content and compressive strength of concrete using ground granulated blast furnace slag were tested and the results were compared with those of ordinary portland cement concrete. In the experiment, we acquired satisfactory results at the point of flowing characteristics and strengths of concrete using ground granulated blast furnace slag within tile replacement ratio of 50% and the optimum quantity of coarse aggregate in concrete was found to be 50%~55% of ratio of absolute volume of coarse aggregate.

  • PDF

Development of concrete block for planting with the multi-slope (다중경사면 적용을 위한 식생블록의 개발)

  • Jeon, In-Ki;Choi, Myung-Hwa;Yoon, Gi-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.193-197
    • /
    • 2008
  • This study enforced to produce the planting concrete block which could be applied to various slopes economically. First of all, the physical properties was investigated with the various types of aggregate and aggregate ratio of the paste for the lead to mixture proportion of the planting concrete. As a result, the orchid stone as aggregate and 30% of aggregate ratio of the paste were used as the basic mixture proportion considering 20~30% of maintained void ratio for the growth of plant, over 20% of capillary suction for holding water, and 3MPa as the minimum strength. For the result of the test to the new planting block which was quite different from existing planting concrete block, it could complement the problems and be possible to produce effectively and economically because various slopes like 40゚~75゚, continual produce by extrusion, and pumping out were possible were possible.

  • PDF

Sound Absorbing Characteristics of Porous Concrete according to Mixing Factor (배합요인에 따른 포러스 콘크리트의 흡음특성)

  • 이준;박승범;권혁준;김경훈;장영일;김형석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.489-492
    • /
    • 2003
  • The results of an experiment on the sound absorption of the porous concrete and its influence on the compressive strength are reported in this paper. Two different sizes of coarse aggregate of 5~13, 13~20mm, and the design void ratio of 20, 25 and 30 percent for a given size of aggregate were used. In the compressive strength, an aggregate of the size of 5~13mm is much higher strength than that of the 13~20mm, In the sound absorption experiment, the size of aggregate of 5~l0mm is much higher sound absorption than that of the 13~20mm. The sound absorption ratio was increased as the design void ratio. As a result, Porous concrete sufficiently have the performance of sound absorption.

  • PDF

A Study on the Physical and Mechanical Properties of Porous Concrete Using Granular artificial zeolite (입상인공 Zeolite를 이용한 포러스콘크리트의 물리$\cdot$역학적 특성에 관한 실험적 연구)

  • Seo Dae seuk;Park Seang Bum;Cho Gwang yean;Lee Jun;Lee Yoon Sun;Kim Bong Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.485-488
    • /
    • 2005
  • The results of an experiment on the sea water purification of the porous concrete using granular artificial zoelite and its influence on the physical and mechanical properties are reported in this paper. Two different sizes of coarse aggregate of 5$\∼$13, 13$\∼$20mm, and three of void ratio(15, 20 and 30 percent) for a given size of aggregate were used. In the water permeability, an aggregate of the size of 13$\∼$20mm is much higher than that of the 13$\∼$20mm, but the water permeability is smaller in the less design void ratio. and In the compressive strength, an aggregate of the size of 5$\∼$13mm is much higher strength than that of the 13$\∼$20mm, but the compressive strength is higher in the less design void ratio.

  • PDF

Mix Design of High Performance Concrete (고성능콘크리트의 배합설계)

  • Jung Yong-Wook;Lee Seung-Han;Yun Yong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.73-76
    • /
    • 2005
  • This study aims to suggest a simple and convenient design for a mix proportion method for high performance concrete by determining the optimum fine aggregate ratio and minimum binder content based on the maximum density theory. The mix design method introduced in this study adopted the optimum fine aggregate ratio with a minimum void and binder content higher than the minimum binder content level. The research results reveal that the method helps to reduce trial and error in the mixing process and is a convenient way of producing high performance concrete with self filler ability. In an experiment based on the mix proportion method, when aggregate with the fine aggregation ratio of 41$\%$ was used, the minimum binder content of high performance concrete was 470kg/$m^{3}$ and maximum aggregate capacity was $0.657m^{3}/m^{3}$. In addition, in mixing high performance concrete, the optimal slump flow to meet filler ability was 65$\pm$5cm, V load flow speed ranged from 0.5 to 1.5.

  • PDF

A Study on the Influence of Aggregate on the Estimation of Compressive Strength by Small Size Core (소구경 코어에 의한 콘크리트 압축강도 추정에 미치는 골재의 영향에 관한 연구)

  • 김경민;백병훈;한민철;윤기원;한천구;송성진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.51-54
    • /
    • 2002
  • This study is intended to investigate an influence of the kinds and the maximum size of aggregate on the compressive strength of small size core specimen. According to the results, the compressive strength of standard specimen is large in order of basalt, granite and limestone aggregate, and shows increasing tendency as the maximum size of aggregate grows large. The compressive strength of concrete using basalt aggregate shows similar tendency to granite aggregate, and that of concrete using limestone aggregate decreases slightly, compared with granite aggregate. The reducing ratio of the compressive strength of 25mm core specimen is least when the maximum size of aggregate is 10mm. But the compressive strength of 50 and 100mm core specimen is almost not influenced by the maximum size of aggregate.

  • PDF

An Experimental Research on the Feature of the Porous Concrete (다공콘크리트의 특성에 관한 실험적 연구)

  • 옥치율;김종주;옥치남
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.71-80
    • /
    • 1990
  • We experimented the physical property of the porous concrete by changing the water cement ratio, when the aggregate ratios are 1:5 and 1:7 separately. And then we received the results as follows. The bigger, the coarse grading of the porous concrete is, the more sensitive to the water cement ratio, the porous concrete becomes. And if we think over its compressive strength, the coarse aggregate which has 5-15mm width is most appropriate. So we concluded that when its compressive strength, permeability coefficient and its unit weight are $50kg/cm^{2}3cm/sec$ and $1900kg/m^{3}$ respectively, the water cement ratio which has 35-37% width is most appropriate, too. And its compressive strength and unit weight show that they are about a quarter and three quarters respectively about the conventional concrete.

  • PDF