• Title/Summary/Keyword: Aged marine steel

Search Result 7, Processing Time 0.024 seconds

Mechanical Properties Assessment of Steels Obtained from an Aged Naval Ship (노후 함정 강재의 기계적 특성 평가)

  • Sang-Hyun Park;Young-Sik Jang;Su-Min Lee;Sang-Rai Cho;Sang Su Jeon;Ju Young Hwang;Nam-Ki Baek
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.65-75
    • /
    • 2023
  • Ships operated at sea for a long time are subjected to various kinds of loads, which may cause various types of damage. Such damages will eventually reduce the strength of hull structures. Therefore, it is necessary to estimate and evaluate the residual strength and remaining fatigue life of aging ships in order to secure structural safety, establish a reasonable maintenance plan, and make a judgment of life extension. For this purpose, the corrosion damage and local denting damage should be measured, fatigue damage estimation should be performed, and material properties of aged steel should be identified. For this study, in order to investigate the mechanical properties of aged steel, steel plates were obtained from a naval ship that reached the end of her life span. The specimens were manufactured from the obtained steel plates, and static and dynamic tensile tests, fatigue tests, and metallographic tests were performed. The mechanical properties obtained from the aged steel plates were compared with those of new steel plates to quantify the aging effect on the mechanical properties of marine steel materials.

The Effect of Passing Aged Years to the Polarization Characteristics of Embedded Steel Bar of Mortar Specimen(W/C:0.4) (몰타르 시험편(W/C:0.4) 내부철근의 분극특성에 미치는 재령년수의 영향)

  • Moon, Kyung-Man;Won, Jong-Pil;Park, Dong-Hyun;Lee, Sung-Yul;Jeong, Jin-A;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • The structures of reinforced concrete has been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as sea water, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of inner steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, multiple mortar test specimen(W/C:0.4) with six types having different cover thickness each other was prepared and was immerged in seawater solution for five years to evaluate the effect of cover thickness and immersion years to corrosion property of embedded steel bar. And the polarization characteristics of these embedded steel bars was investigated using electrochemical methods such as measuring corrosion potential, cathodic polarization curve, and cyclic voltammogram. At the beginning of immersion, the corrosion potentials exhibited increasingly nobler values with increasing cover thickness. However, after immersed for 5 years, the thicker cover of thickness, the corrosion potentials shifted in the negative direction, and the relationship between corrosion potential and cover thickness was not in good agreement with each other. Therefore, it is considered that the thinner cover of thickness, corrosive products deposited on the surface of the embedded steel bar plays the role as a resistance polarization which is resulted in decreasing the corrosion rate as well as shifting the corrosion potential in the positive direction. As a result, it seemed that the evaluation which corrosion possibility of the reinforced steel would be estimated by only measuring the corrosion potential may not be a completely desirable method. Therefore, it is suggested that we should take into account various parameters, including cover thickness, passed aged years as well as corrosion potential for more accurate assessment of corrosion possibility of reinforced steel which is exposed to partially or fully in marine environment for long years.

Effect of Passing Aged Years and Coating Thickness on Corrosion Properties of Reinforcing Steel in Mortar (W/C:0.5) (모르타르(W/C:0.5)내의 철근의 부식 특성에 미치는 재령 년수와 피복두께의 영향)

  • Moon, Kyung-Man;Lee, Sung-Yul;Jeong, Jin-A;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The structures of reinforced concrete have been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as seawater, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, specimens having six different coating thickness (W/C:0.5) were prepared and immersed in flowing seawater for five years to evaluate the effect of coating thickness and immersion time on corrosion property. The polarization characteristics of these embedded steel bars were investigated using electrochemical methods such as corrosion potential, anodic polarization curve, and impedance. At the 20-day immersion, the corrosion potentials exhibited increasingly nobler values with coating thickness. However, after 5-yr. immersion their values were shifted in the negative direction, and the relationship between corrosion potential and coating thickness was not shown. Although 5-yr. immersion lowered corrosion potential, 5-yr. immersion did not increase corrosion rate. In addition, after 5-yr. immersion, the thinner cover thickness, corrosion current density was decreased with thinning coating thickness. It is due to the fact that ease incorporation of water, dissolved oxygen and chloride ion into a steel surface caused corrosion and hence, leaded to the formation of corrosion product. The corrosion product plays the role as a corrosion barrier and increases polarization resistance. The corrosion probability evaluated depending on corrosion potential may not be a good method for predicting corrosion probability. Hence, the parameters including cover thickness and passed aged years as well as corrosion potential is suggested to be considered for better assessment of corrosion probability of reinforced steel exposed to partially or fully in marine environment for long years.

Corrosion Characteristics of Reinforced Steel Bar Emedded in Multiple Mortar Specimen(W/C:0.5) Aged 5 Years in Seawater

  • Moon, Kyung-Man;Takeo, Oki;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • Reinforced concrete structures have been increasingly widely used in numerous industrial fields. These structures are often exposed to severely corrosive environments such as seawater, contaminated water, acid rain, and the seashore. Thus, the corrosion problems that occur with the steel bars embedded in concrete are very important from the safety and economic points of view. In this study, the effects of the cover thickness on the corrosion properties of reinforced steel bars embedded in multiple mortar test specimens immersed in seawater for 5 years were investigated using electrochemical methods such as the corrosion potentials, polarization curves, cyclic voltammograms, galvanostat, and potentiostat. The corrosion potentials shifted in the noble direction, and the value of the AC impedance also exhibited a higher value with increasing cover thickness. Furthermore, the polarization resistance increased with increasing cover thickness, which means that the oxide film that is deposited on the surface of a steel bar surrounded by alkali environment exhibits better corrosion resistance because the water, chloride ions and dissolved oxygen have difficulty penerating to the surface of the steel bar with increasing cover thickness. Consequently, it is considered that the corrosion resistance of reinforced steel can be improved by increasing the cover thickness. However, the corrosion resistance values of a steel bar estimated by measuring the corrosion potential, impedance and polarization resistance were not in good agreement with its corrosion resistance obtained by polarization curves.

Effect of High Temperature Aging Time on Mechanical Characteristics Degradation of STS 304 Steel (STS 304 강의 기계적 특성에 미치는 고온 열화 시간의 영향)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.380-385
    • /
    • 2017
  • Mechanical characteristics of the STS 304 which is heat resistance steel were investigated after artificial aging at $650^{\circ}C$ with 1,000 hours. Tensile test specimens and small test pieces were done artificial aging up to 1,000 hours in the high temperature atmospheric environment. The results present that as the aging time increased, tensile properties were deteriorated. In the case of failure mechanism, the configuration of the fractography presented drastic change from ductile to brittle with aging time. $M_{23}C_6$ carbide leading to the change of the mechanical properties and fracture mode of the aged STS 304 steel continuously precipitated along the grain boundaries of austenite microstructure.

Ecological Effects of Slag Extracts on the Initial Life Cycle of the Rotifer Brachionus plicatilis and Benthic Copepod Tigriopus japonicus (윤충류 Brachinus plicatilis와 저서성 요각류 Tigriopus japonicus의 초기생활사에 미치는 슬래그 추출액의 생태 영향)

  • Yoon, Sung-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.490-499
    • /
    • 2016
  • In this study, the marine ecological impacts of dephosphorized slag and steel slag on the initial life cycle of the rotifer Brachionus plicatilis and benthic copepod Tigriopus japonicus (in marine trophic structure as a first consumer) exposure to slag extracts have been considered using a marine ecotoxicological assessment. In the results of a screen test on slag extracts, the pH of an undiluted solution was measured to have high alkalinity (pH 8.89-12.16), but a toxic reaction to this undiluted solution before and after aging was divided according to test species. For non-aged slag, the toxic effect ($LC_{50}$) of neonate on B. plicatilis was seen to be severe with dephosphorized slag (20.8 %) than steel slag (63.8 %) with under pH-uncontrolled conditions. The toxic values of dephosphorized and steel slag were estimated to be 35.3 % and 36.0%, respectively, for nauplius with T. japonicus. However, the toxicity of slag extracts before and after aging were different for T. japonicus than for B. plicatilis based on the characteristics of the test materials, with pH-controlled conditions. In conclusion, the results of this study suggest that slag can be relatively stable after aging and may not be likely to influence marine environments, even given repetitive extracting under pH-uncontrolled conditions. This study confirms that a marine ecotoxicological assessment method applied to mechanically activated samples can give an idea of the resistance a marine environment has against the introduction of hazardous materials due to precipitation and weathering.

The Effect of Age Heat-treatment to the Electro-Chemical Corrosion Behavior on Ti-6Al-4V (Ti-6Al-4V재의 전기화학적부식 거동에 미치는 시효열처리의 영향)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.70-77
    • /
    • 2000
  • In this paper, the effect of solution and age heat treatment to the corrosion behavior for the Ti-6Al-4V alloy were studied by cyclic polarization methods. Ti-6Al-4V was solution heat treated at $1,066^{\circ}C$ and $966^{\circ}C$ for 5 hours, and followed by age heat treated at $650^{\circ}C$, $600^{\circ}C$ and $550^{\circ}C$ with 1, 2, 4, 8 and 16 hours under vacuum environment. Test solution was 3.5% NaCl with temperature $25^{\circ}C$. The obtained results were as follows: 1. Base metal was exhibited higher electrical charge than that of solution and aged material. With decrease of solution-treatment temperature from 1066 to $966^{\circ}C$, the electrical charge was increased due to softening of micro structure. 2. The corrosion resistance of specimen that solution treated at $966^{\circ}C$ for 5 hours and age heat treated at 650, 660 and $550^{\circ}C$ were increased with increase of aging time to 4, 8 and 16 hours respectively, and then decreased. 3. In case of 316L stainless steel, measured charge and corrosion potential was 0.0627 coulomb and -614 mV respectively. Corrosion resistance of Ti-6Al-4V was higher than that of 316L.

  • PDF