• Title/Summary/Keyword: Age hardening

Search Result 145, Processing Time 0.03 seconds

Effect of CaO Addition on Age Hardening Behavior of AZ91 Alloy (AZ91 합금의 시효경화 거동에 미치는 CaO 첨가의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.193-198
    • /
    • 2011
  • Effect of CaO addition on age hardening response has been studied by using optical microscopy, scanning electron microscopy and differential thermal analysis in AZ91 and CaO-containing ECO-AZ91 alloys. After solution treatment, the ${\beta}$($Mg_{17}Al_{12}$) phase formed during solidification mostly disappeared in the microstructure in the AZ91 alloy, whereas numerous ${\beta}$ precipitates containing Ca were still observed in the ECO-AZ91 alloy due to its enhanced thermal stability. The ECO-AZ91 alloy showed the delayed peak aging time and higher peak hardness compared with those of the AZ91 alloy. The activation energies for ${\beta}$ precipitation calculated by means of Kissinger method increased from 71.4 to 85.6 kJ/mole by the addition of CaO, which implies that CaO plays a role in reducing ${\beta}$ precipitation rate in the AZ91 alloy.

Age Hardening and Microstructure in Rapidly Solidified Mg-Al-Si-xCa Alloys (급냉응고된 Mg-Al-Si-xCa 합금의 시효경화 및 미세조직)

  • Kim, Wan-Chul;Park, Ji-Ha;You, Bong-Sun;Park, Won-Wook
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.433-439
    • /
    • 1999
  • Rapidly solidified Mg-Al-Si base alloys containing Ca were obtained by melt spinning. The melt-spun ribbons were aged isochronally or isothermally to investigate age hardening phenomena and microstructural change according to the alloy composition. Age hardening occurred after aging at $200^{\circ}C$ for 1h mainly due to the precipitation of $Al_2Ca$ and $Mg_2Ca$, which have coherent interfaces with the matrix. With the increase of Ca content, the hardness values of the alloy ribbons were increased. Among the alloys, Mg-10Al-2 Si-3Ca alloy showed a good thermal stability at elevated temperature.

  • PDF

Sensitivity Analysis of Parameters Affecting Seismic Response for RC Shear Wall with Age-Related Degradation (경년열화된 철근콘크리트 전단벽의 지진응답에 영향을 미치는 변수들의 민감도분석)

  • Park, Jun-Hee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • After a concrete is poured, reinforced concrete structures were distressed by physical and chemical factor over time. It is in need to define important variables related to structural behavior for effectively conducting seismic analysis of structures with age-related degradation. In this study, a sensibility analysis using the first-order second moment method was performed to analyze an important variables for the reinforced concrete shear wall with age-related degradation. Because the seismic capacity of aging structures without a concrete hardening effect can be underestimated, the sensibility of analysis variables was analyzed according to the concrete hardening. Important variables for RC shear wall with age-related degradation was presented by using the tornado diagram.

Prediction of Temperature and Moisture Distributions in Hardening Concrete By Using a Hydration Model

  • Park, Ki-Bong
    • Architectural research
    • /
    • v.14 no.4
    • /
    • pp.153-161
    • /
    • 2012
  • This paper presents an integrated procedure to predict the temperature and moisture distributions in hardening concrete considering the effects of temperature and aging. The degree of hydration is employed as a fundamental parameter to evaluate hydro-thermal-mechanical properties of hardening concrete. The temperature history and temperature distribution in hardening concrete is evaluated by combining cement hydration model with three-dimensional finite element thermal analysis. On the other hand, the influences of both self-desiccation and moisture diffusion on variation of relative humidity are considered. The self-desiccation is evaluated by using a semi-empirical expression with desorption isotherm and degree of hydration. The moisture diffusivity is expressed as a function of degree of hydration and current relative humidity. The proposed procedure is verified with experimental results and can be used to evaluate the early-age crack of hardening concrete.

A Experimental Study on Early Age Compressive Strength of Cement Mortar Using Anti Freezer and Hardening Accelerator at low temperature (방동제와 경화촉진제를 사용한 저온환경하 모르타르의 초기압축강도에 관한 실험적 연구)

  • Kim, Mok-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.135-136
    • /
    • 2014
  • In this study, the experimental study on the early age compressive strength of cement mortar using anti freezer and hardening accelerator at low temperature was conducted. For this study, all of materials for experiment were kept in a low temperature for 24 hours before mortar mixing. After mortar curing at low temperature, compressive strength was measured at the early ages. Furthermore, properties of hardened cement material was analysed using TG-DTA and MIP.

  • PDF

A Study on The Variation of Penetration According to The Shielding Gas in A1100 Aluminum Welding (A1100 알루미늄 용접에서 실드가스의 종류에 따른 용입부의 변화 연구)

  • Kim, Jin-Su;Kim, Bub-Hun;Kim, Gue-Tae;Park, Yong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.49-54
    • /
    • 2013
  • Recently welding of aluminum material is actively carried out to make lightweight in the fields of LNG vessels, aircraft, chemical plants, etc. To obtain high strength, hardness and elongation, elements such as manganese, zinc, silicon, etc should be added in aluminum alloy, which has been improved on the mechanical properties like precipitation hardening, age hardening, loosening, corrosion resistance acid resistance. Ar gas is used as a shielding gas of MIG welding for aluminum, also $N_2$, $O_2$, $CO_2$, $H_2$ etc can be added depending on the composition of the alloy. In this study, Ar + $O_2$, Ar, and He were used for welding, hardness, penetration status and changes in composition of penetrated parts were compared and analyzed. This made it possible to know the status and changes of the process in the penetrated parts depending on used gas throughout this study.

Current-Voltage Characteristics at Annealed Be-Cu Alloy Interfaces (열처리된 Be-Cu 합금 계면에서 전류-전압 특성)

  • 천장호;부종욱
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.31-38
    • /
    • 1991
  • The current-voltage characteristics at annealed Be-Cu alloy(1.8-2 wt% Be, 0.2 wt% Co+Ni) interfaces have been studied by means of the cyclic voltammetric method. The specimens were annealed in nitrogen gas($N_{2}$) furnace at 36$0^{\circ}C$ for 1.5 hours. After annealing, the vickers hardness(HV) was increased from 210 to 385. The used solutions were distilled water(H$_{2}$O), 10$^{-3}M\;CsNO_{2},10^{-2}M\;KCl,10^{-2}M\;KOH,10^{-4}M\;H_{2}SO_{4}$ aqueous electrolytes, and ethylalcohol ($C_{2}H_{5}OH$), etc. The cyclic voltammograms showed significant current-voltage characteristics between the annealed and unannealed specimens at the same conditions. The age hardening and the related surface potential barrer and dissolution effects have been observed during the whole experimental process. The dissolution process of annealed Be-Cu alloys was effectively retarded by the age hardening phenomenon. The age hardening effect also raised the surface potential barrier of Be-Cu alloys. The interfacial phenomena of Be-Cu alloys seem to be one of good models for understanding the activation process.

  • PDF

Investigation of Early-Age Concrete Strength Development Using Hardening Accelerator (경화촉진제를 사용한 콘크리트의 초기강도 발현 특성 검토)

  • Kim, Gyu-Yong;Kim, Yong-Ro;Park, Jong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, performance of hardening accelerator types which promote setting and hardening of cement has been reviewed in order to develop early age strength of concrete with compressive strength of 21~27 MPa after examination of strength development of the concrete at early age according to curing temperature and unit cement(binder) content. As results, soluble mineral salt showed better hardening acceleration effect than organic salt in the scope of this study. Also, hydration reaction accelerating effect of $C_3S$ by Soluble mineral salt is effective on development of early age compressive strength and it was shown that the Pt's hydration reaction accelerating effect was the best. Construction duration reduction can be expected by securing compressive strength for prevention of early aged freezing damage in 25hour-curing time under curing temperature at $15^{\circ}C$. Also, it was shown that compressive strength of specimen cured at $5^{\circ}C$ was similar with plain specimen cured at $10^{\circ}C$. Therefore, it is expected that fuel costs and carbon dioxide can be reduced when the same construction duration is considered.

Rheological Properties of Super Early Hardening Cement Paste Using Set Controlling Agent (응결조절제를 첨가한 초속경 시멘트 페이스트의 유동 특성)

  • Yang Seung-Kyu;Um Tai-Sun;Lee Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.413-416
    • /
    • 2005
  • The super early hardening cement is widely used for reducing construction period. But there are some problems with handling the cement because the loss of workability is so big to control. In this study, the fluidity properties of super early hardening cement paste was evaluated at early age of hydration by using gel-time determination method. 4 types of set controlling agent were selected and combinations of them were used for gel-time test. As a result, the gel-time of super early hardening cement paste was extended up to 20 minutes by using the combinations of several types set controlling agent.

  • PDF

Prediction of chloride penetration into hardening concrete (경화중 콘크리트의 염해 침투성능에 관한 연구)

  • Fan, Wei-Jie;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.50-51
    • /
    • 2015
  • In marine and coastal environments, penetration of chloride ions is one of the main mechanisms causing concrete reinforcement corrosion. Currently, most of experimental investigations about submerged penetration of chloride ions are started after the four weeks standard curing of concrete. The further hydration of cement and reduction of chloride diffusivity during submerged penetration period are ignored. To overcome this weak point, this paper presents a numerical procedure to analyze simultaneously cement hydration reaction and chloride ion penetration process. First, using a cement hydration model, degree of hydration and phase volume fractions of hardening concrete are determined. Second, the dependences of chloride diffusivity and chloride binding capacity on age of concrete are clarified. Third, chloride profiles in hardening concrete are calculated. The proposed numerical procedure is verified by using chloride penetration test results of concrete with different mixing proportions.

  • PDF