• Title/Summary/Keyword: Agarooligosaccharides

Search Result 16, Processing Time 0.025 seconds

Preparation Conditions of Agar Oligosaccharides with Organic Acids (한천 올리고당 제조를 위한 유기산 처리 조건)

  • JOO Dong-Sik;KIM Ok-Seon;CHO Soon-Yeoung;LEE Chang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.1
    • /
    • pp.6-10
    • /
    • 2003
  • The optimum organic acid and temperature conditions were investigated for the preparation of oligosaccharides from agar. The tested organic acids were acetate, citrate, lactate, malate, and succinate and the conditions for oligosaccharides preparation were $0.3\%,\;0.5%;and\;0.7\%$ organic acid concentrations at $80\~120^{\circ}C.$ The low concentration of organic acid below $0.3\%$ decreased the degrading ratio and the high concentration up $0.5\%$ could not changed the degrading ratio. Conditions below $100^{\circ}C$ was not good for degrading agar. But $100^{\circ}C\;or\;120^{\circ}C$ was optimal temperature conditions for agarooligosaccharides according to the organic acid type and concentration. The organic acid concentration was $0.5\%$ and organic acid was the citrate or malate. The treatment time considered optimum was 120$\~$180 min. The maximal degrading ratio giving optimum conditions such as $100^{\circ}C\;and\;120^{\circ}C\;was\;35.5\%\;and\;38.7\%,$ respectively. The agarooligosaccharides prepared by autoclaving at $100^{\circ}C\;and\;120^{\circ}C$ were 2$\~$7 species oligomer.

Characterization of Agarase Produced from the Isolated Marine Bacterium Marinomonas sp. SH-2 (해양성 Marinomonas sp. SH-2 균주가 생성하는 agarase의 분리 및 특성조사)

  • Jo, Jeong-Gwon;Lee, Sol-Ji;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.198-203
    • /
    • 2016
  • This study aimed to isolate a novel agarase-producing marine bacterium and characterize its agarase, as agarases are known to produce biofunctional agarooligosaccharides or neo-agarooligosaccharides. A novel agar-degrading bacterium, SH-2, was isolated from the seawater of Namhae in Gyeongnam Province, Korea, and cultured in Marine agar 2216 medium. The 16S rRNA gene sequence represented 99% identity with that of the members of the Marinomonas genus; hence, the isolated bacterium was named Marinomonas sp. SH-2. The crude agarase was prepared from a culture medium of Marinomonas. sp SH-2, and exhibited maximum agarase activity at 170.2 units/l. The optimum conditions were pH 6.0 and 30℃ in 20 mM Tris-HCl buffer. The agarase activity of the bacterium was highly elevated from 20℃(42% relative activity) to 30℃(100%), and 82% activity was shown at 40℃. Its relative activities were less than 40% at over 40℃ after a 0.5 hr exposure. Relative activity was 100% at pH 6.0, while it was 72% and 48% at pH 5.0 and pH 7.0, respectively. The enzyme from Marinomonas sp. SH-2 degraded agarose to neoagarohexaose and neoagarotetraose, indicating that the enzyme is β-agarase. Thus, Marinomonas sp. SH-2 and its enzyme could be practical for applications in food, cosmetic, and medical research.

Isolation of an Agarase-producing Persicobacter sp. DH-3 and Characterization of its β-agarase (Agarase를 생산하는 Persicobacter sp. DH-3의 분리 및 β-agarase의 특성)

  • Heo, Da-Hye;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.158-163
    • /
    • 2019
  • The purpose of this study was to isolate a new marine agarase-producing bacterium. Agarase can hydrolyze agar and agarose to produce agarooligosaccharides or neoagarooligosaccharides, which possess many physiological functions. Strain DH-3 was isolated from seawater collected from the coast of Yeosu at Jeollanam province, Korea. A 16S rDNA sequence analysis showed this strain to be Persicobacter sp. DH-3. Extracellular agarase was prepared from culture media of Persicobacter sp. DH-3 and used for characterization. Relative activities at 20, 30, 40, 50, 60, and $70^{\circ}C$ were 50, 55, 70, 100, 90, and 50%, respectively. Relative activities at pH 5, 6, 7, and 8 were 75, 100, 90, and 75%, respectively. The enzyme showed maximum activity at $50^{\circ}C$ in a 20 mM Tris-HCl buffer at pH 6. This enzyme could be useful, as agar is in liquid state at $50^{\circ}C$. Agarase activities were maintained at 80% or more for 2 hr at 20, 30, and $40^{\circ}C$. Thin layer chromatography analysis suggested that Persicobacter sp. DH-3 produced extracellular ${\beta}$-agarases as it hydrolyzed agarose to produce neoagarohexaose and neoagarotetraose. In addition, zymogram analysis confirmed that Persicobacter sp. DH-3 produces at least three agar-degrading enzymes with molecular weights of 45, 70, and 140 kDa. Therefore, it is expected that agarases from Persicobacter sp. DH-3 could be used to produce functional neoagarooligosaccharides.

Purification and Characterization of Agarase from Marine Bacterium, Algibacter lectus AS-3 (해양 미생물Algibacter lectus AS-3으로부터 agarase의 분리 및 특성)

  • Jung, Il Sun;Choi, Young Ju
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.142-148
    • /
    • 2007
  • An agar-degrading marine bacterium, strain AS-3 was isolated from the seawater. The strain AS-3 was identified as Algibacter lectus AS-3 by 16S rDNA sequence. The optimum medium for agarase activity of the isolated strain was determined to be marine medium, marine broth 2216 containing 0.1% agar as carbon source. An extracellular agarase was purified 6.9-fold from the culture supernatant by ammonium sulfate precipitation, ion exchange chromatography and gel filtration methods. The optimum pH and temperature for this enzyme were 7.0 and $40-50^{\circ}C$, respectively. Antioxidative activity of the strain AS-3 was 62.4% in the supernatant cultured for 12 h.

  • PDF

Characterization of β-agarase from Isolated Simiduia sp. SH-4 (분리된 Simiduia sp. SH-4가 생산하는 β-agarase의 특성조사)

  • Kim, Jae-Deog;Lee, Sol-Ji;Jo, Jeong-Gwon;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.453-459
    • /
    • 2016
  • Agarases are classified into α-agarase and β-agarase that produce agarooligosaccharides and neoagarooligosaccharides, respectively. Neoagarooligosaccharides have whitening effect of skin, delay of starch degradation, and inhibition of bacterial growth etc. Hence, the object of this study was to isolate a novel agarase producing marine bacterium and characterization of its β-agarase. A novel agar-degrading bacterium was isolated from seashore of Namhae at Gyeongnamprovine, Korea and purely cultured with Marine agar 2216 media. The isolated bacterium was identified as Simiduia sp. SH-4 after 16S rRNA gene sequencing. The enzymatic sample was obtained from culture media of Simiduia sp. SH-4. Enzymatic activity was highly increased from 20(30% relative activity) to 30℃ (100%) and decreased from 30 to 40℃(75%) and so more. Relative activity was 100% at pH 6 while those were about 91% and 59% at pH 5.0 and 7.0, respectively, meaning the enzyme possesses narrow optimal pH range. Hence, the enzyme exhibited the maximal activity with 120.4 units/l at pH 6.0 and 30℃ in 20 mM Tris-HCl buffer. Thin layer chromatography (TLC) analysis showed that Simiduia sp. SH-4 produces β-agarase, which hydrolyze agarose to produce biofunctional neoagarooligosaccharides such as neoagarotetraose and neoagarobiose. Hence, broad applications would be possible using Simiduia sp. SH-4 and its enzyme in the food industry, cosmetics and medical fields.

Identification and Characterization of an Agarase- and Xylanse-producing Catenovulum jejuensis A28-5 from Coastal Seawater of Jeju Island, Korea (제주 연안해수로부터 한천 분해 효소 및 자일란 분해 효소를 생산하는 Catenovulum jejuensis A28-5의 동정 및 특성 규명)

  • Kim, Da Som;Jeong, Ga Ram;Bae, Chang Hwan;Yeo, Joo-Hong;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.168-177
    • /
    • 2017
  • Strain A28-5, which can degrade xylan and agar in solid medium, was isolated from a coastal seawater sample collected from Jeju Island, South Korea. This strain was found to be a gram-negative, $Na^+$-requiring bacterial strain with a polar flagellum for motility. Additionally, the strain was tolerant to antibiotics such as ampicillin and thiostrepton. The G+C content of the genome was 43.96% and menaquinone-7 was found to be the predominant quinone. Major fatty acids constituting the cell wall of the strain were $C_{16:1}$ ${\omega}7c/iso-C_{15:0}$ 2-OH (23.32%), $C_{16:0}$ (21.83%), and $C_{18:1}$ ${\omega}7c$ (17.98%). The 16S rRNA gene sequence of the strain showed the highest similarity (98.94%) to that of Catenovulum agarivorans YM01, which was demonstrated by constructing a neighbor-joining phylogenetic tree. A28-5 was identified as a novel species of the genus Catenovulum via DNA-DNA hybridization with Catenovulum agarivorans YM01, and thus was named as Catenovulum jejuensis A28-5. The formation of tetramers and hexamers of xylooligosaccharides and (neo)agarooligosaccharides, respectively, were confirmed by thin-layer chromatography analysis using an enzyme reaction solution containing xylan or agarose with two crude enzymes prepared from the liquid culture of the strain.