• 제목/요약/키워드: AgNPs

검색결과 121건 처리시간 0.025초

Au 나노입자가 함침된 Poly (3, 4-ethylenedioxythiphene) 고분자 박막의 전기변색 특성연구 (Characterization of Electrochromic Properties of Au Nanoparticles Incorporated Poly (3, 4-ethylenedioxythiphene) Film)

  • 이종석;구경회;박형호
    • 한국재료학회지
    • /
    • 제19권10호
    • /
    • pp.527-532
    • /
    • 2009
  • The electrochromic properties of Au nanoparticles (NPs) incorporating poly (3, 4-ethylenedioxythiphene) (PEDOT) film were investigated. Trisodium citrate was used for stabilizing Au NPs to control the size. The capping molecules of the Au nanoparticles were exchanged from citrate to 2-mercaptoethanol (2-ME). Water was removed by centrifuge and Au NPs were redispersed in methanol (MeOH). Finally, we obtained ca. 11.7 nm diameter of Au NPs. The effects of 0.15 at% of Au NPs incorporation on the optical, electrical, and eletrochromic properties of PEDOT films were investigated. The electrical property and switching speed of Au/PEDOT film was slightly improved over that of PEDOT film because Au NPs play a hopping site role and affect packing density of the PEDOT chain. Through the ultra violet-visible spectra of PEDOT and Au/PEDOT films at -0.7 V (vs Ag/AgCl), blue shift of maximum absorption peak was observed from PEDOT (585.4 nm) to Au/PEDOT (572.2 nm) due to a shortening of conjugated length of PEDOT. The Au NPs interfered with the degree of conjugation and the maximum absorption peak was shifted to shorter wavelength.

저온 열처리 공정에 따른 Ag2Se 나노입자 박막의 열전특성 (Effect of Annealing Temperature on Thermoelectric Properties of Ag2Se Nanoparticle Thin Films)

  • 양승건;조경아;윤정권;최진용;김상식
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.611-616
    • /
    • 2016
  • In this study, we synthesized $Ag_2Se$ nanoparticles (NPs) in an aqueous solution and investigated the thermoelectric characteristics of $Ag_2Se$ NPs thin films on plastic substrates. Regardless of thermal annealing treatment, all the $Ag_2Se$ NPs thin films show the negative Seebeck coefficients, indicating the n-type characteristics. As the annealing temperature increases, the electric conductivity increases while the Seebeck coefficient decreases. The electric conductivity of the thin film annealed at $180^{\circ}C$ is larger by $10^6$ times, compared with the as-prepared thin film, And the maximum power density for the thin film annealed at $180^{\circ}C$ is calculated to be $44{\mu}W/cm^2$.

은 나노입자를 함유하는 카르복시메틸 셀룰로오스 하이드로겔 제조 (Formation of Carboxymethyl Cellulose Hydrogel Containing Silver Nanoparticle)

  • 박종석;광가;권희정;임윤묵;노영창
    • 방사선산업학회지
    • /
    • 제4권4호
    • /
    • pp.353-357
    • /
    • 2010
  • Silver nanoparticles (AgNPs) can be used in the areas such as integrate circuit, cell electrode and antimicrobial deodorant. In this study, AgNPs have been prepared by using $AgNO_3$ aqueous solution in the carboxymethyl cellulose (CMC) hydrogel. CMC powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make CMC hydrogel. CMC hydrogels were dipped into $1.0{\times}10^{-2}M$ $AgNO_3$ solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. The characteristics of silver nanoparticles in the CMC hydrogels were monitored by UV-Vis and the morphological study and dispersed coefficient of particles were investigated by FE-SEM/EDX. It was observed that the sodium salt in the CMC is crucial to the formation of silver nanoparticle. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.

Fabrication of Artificial Sea Urchin Structure for Light Harvesting Device Applications

  • Yeo, Chan-Il;Kwon, Ji-Hye;Kim, Joon-Beom;Lee, Yong-Tak
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.380-381
    • /
    • 2012
  • Bioinspired sea urchin-like structures were fabricated on silicon by inductively coupled plasma (ICP) etching using lens-like shape hexagonally patterned photoresist (PR) patterns and subsequent metal-assisted chemical etching (MaCE) [1]. The lens-like shape PR patterns with a diameter of 2 ${\mu}m$ were formed by conventional lithography method followed by thermal reflow process of PR patterns on a hotplate at $170^{\circ}C$ for 40 s. ICP etching process was carried out in an SF6 plasma ambient using an optimum etching conditions such as radio-frequency power of 50 W, ICP power of 25 W, SF6 flow rate of 30 sccm, process pressure of 10 mTorr, and etching time of 150 s in order to produce micron structure with tapered etch profile. 15 nm thick Ag film was evaporated on the samples using e-beam evaporator with a deposition rate of 0.05 nm/s. To form Ag nanoparticles (NPs), the samples were thermally treated (thermally dewetted) in a rapid thermal annealing system at $500^{\circ}C$ for 1 min in a nitrogen environment. The Ag thickness and thermal dewetting conditions were carefully chosen to obtain isolated Ag NPs. To fabricate needle-like nanostructures on both the micron structure (i.e., sea urchin-like structures) and flat surface of silicon, MaCE process, which is based on the strong catalytic activity of metal, was performed in a chemical etchant (HNO3: HF: H2O = 4: 1: 20) using Ag NPs at room temperature for 1 min. Finally, the residual Ag NPs were removed by immersion in a HNO3 solution. The fabricated structures after each process steps are shown in figure 1. It is well-known that the hierarchical micro- and nanostructures have efficient light harvesting properties [2-3]. Therefore, this fabrication technique for production of sea urchin-like structures is applicable to improve the performance of light harvesting devices.

  • PDF

7,7,8,8-Tetracyanoquinodimethane를 활용한 고투과성 올레핀 촉진수송 나노복합체 분리막 제조 및 특성 분석 (Preparation and Characterization of Highly Permeable Facilitated Olefin Transport Nanocomposite Membrane Utilizing 7,7,8,8-tetracyanoquinodimethane)

  • 황정현;이은용;강상욱
    • 멤브레인
    • /
    • 제24권6호
    • /
    • pp.417-422
    • /
    • 2014
  • 본 연구에서는 Poly(ethylene oxide) (PEO)/Ag Nanoparticles (NPs)/7,7,8,8-Tetracyanoquinodimethane (TCNQ) 분리막 시스템을 제조하여 기존의 PEO/Ag NPs/p-Benzoquinone (p-BQ) 복합체 분리막보다 더 향상된 성능을 보이는 고투과성올레핀 촉진수송 나노복합체 분리막을 얻고자 하였다. 고분자 지지체 PEO와 은 나노 입자 전구체 $AgBF_4$는 1 대 0.4 몰비로 고정하고 전자 수용체인 TCNQ 함량은 다양하게 조절하였으며 1/0.4/0.004 몰비에서 가장 높은 올레핀 분리막 성능을 확인하였다. 따라서 이 비율에서 long-term test를 진행하였고 초반에는 투과도 약 23 GPU, 선택도 약 6 (프로필렌/프로판)의 수치를 보였으나 32시간 만에 투과도는 약 6 GPU, 선택도는 약 2 (프로필렌/프로판)로 감소하는 것을 확인하였다.

Fabrication of Biogenic Antimicrobial Silver Nanoparticles by Streptomyces aegyptia NEAE 102 as Eco-Friendly Nanofactory

  • El-Naggar, Noura El-Ahmady;Abdelwahed, Nayera A.M.;Darwesh, Osama M.M.
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권4호
    • /
    • pp.453-464
    • /
    • 2014
  • The current research was focused on the extracellular biosynthesis of bactericidal silver nanoparticles (AgNPs) using cell-free supernatant of a local isolate previously identified as a novel Streptomyces aegyptia NEAE 102. The biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102 was quite fast and required far less time than previously published strains. The produced particles showed a single surface plasmon resonance peak at 400 nm by UV-Vis spectroscopy, which confirmed the presence of AgNPs. Response surface methodology was chosen to evaluate the effects of four process variables ($AgNO_3$ concentration, incubation period, pH levels, and inoculum size) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. Statistical analysis of the results showed that the linear and quadratic effects of incubation period, initial pH, and inoculum size had a significant effect (p < 0.05) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. The maximum silver nanoparticles biosynthesis (2.5 OD, at 400 nm ) was achieved in runs number 5 and 14 under the conditions of 1 mM $AgNO_3$ (1-1.5% (v/v)), incubation period (72-96 h), initial pH (9-10), and inoculum size (2-4% (v/v)). An overall 4-fold increase in AgNPs biosynthesis was obtained as compared with that of unoptimized conditions. The biosynthesized silver nanoparticles were characterized using UV-VIS spectrophotometer and Fourier transform infrared spectroscopy analysis, in addition to antimicrobial properties. The biosynthesized AgNPs significantly inhibited the growth of medically important pathogenic gram-positive (Staphylococcus aureus) and gram-negative bacteria (Pseudomonas aeruginosa) and yeast (Candida albicans).

4H-SiC기판 위의 자기구조화된 Ag/Ti 나노입자 제어를 위한 열처리 분석 (Annealing Effect on controlling Self-Organized Ag/Ti Nanoparticles on 4H-SiC Substrate)

  • 김소망;오종민;구상모
    • 전기전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.177-180
    • /
    • 2016
  • 본 연구에서는 4H-SiC(0001)기판 위에서 형성되는 나노구조화를 제어하기 위해 상지층과 하지층으로 구성된 이중층 금속을 증착하고 두께, 열처리 시간을 변화하였다. 또한 표면에너지와 응집현상의 상관관계를 분석하기 위해 SiC와는 다른 표면에너지를 갖는 Glass와 Si기판에도 같은 조건으로 실험하였다. FE-SEM을 통하여 금속이 나노구조화를 형성하는 두께가 Ag=20nm, Ti=2nm임을 확인 했으며 두께가 두꺼울 수록 나노 입자가 형성되지 않았다. 세기판의 표면에너지를 구하기 위해 접촉각 측정기를 통해 정접촉각법으로 측정하였다. 그 결과 표면에너지 값이 가장 높은 Glass(53.89 mN/m) 기판에서 나노 입자가 가장 고르게 분포된 형태를 보였으며 SiC(41.13 mN/m)에서 나노구조화 되는 양상을 보였고, Si(32.96 mN/m)에서는 NPs 형성이 되지 않았다. 표면에너지가 작을수록 나노 입자형성이 고르게 분포되는 현상을 Young equation으로 분석하였다.

올레핀/파라핀 분리용 운반체로서 AgNO3 전구체를 활용한 은 나노입자 제조 및 NO3-의 효과 분석 (Preparation of Silver Nanoparticles Using AgNO3 Precursor as Carrier for Olefin/Paraffin Separation and the Effect Analysis of NO3-)

  • 김민수;강상욱
    • 멤브레인
    • /
    • 제28권4호
    • /
    • pp.265-270
    • /
    • 2018
  • 이전 연구에서 올레핀/파라핀 분리를 위해 poly(ethylene oxide)(PEO)/Ag nanoparicles (AgNPs)(전구체$AgBF_4$)/p-benzoquinone (p-BQ) 복합막이 제조되었으며, 이 복합체 분리막의 성능은 100시간까지 선택도 10과 투과도 15 GPU로 유지되는 것이 확인되었다. 하지만 전구체인 $AgBF_4$의 가격이 고가이기 때문에, 본 연구에서는 가격 측면에서 경쟁력이 있는 $AgNO_3$를 Ag nanoparticles의 전구체로 사용하여 실험을 진행하였다. 그 결과 이미 존재하고 있는 $NO_3{^-}$가 AgNPs를 감싸고 있기 때문에 분리 성능이 나오지 않는 것으로 관찰되었다. 이번 연구에서는 $AgNO_3$를 Ag nanoparticles의 전구체로 사용하여도 높은 성능을 내기 위해 전자수용체 7,7,8,8-tetracyanoquinodimethane (TCNQ)를 사용하여 PEO, polyvinyl alcohol (PVA), polyether block amide-1657 (PEBAX-1657) 고분자 복합막을 제조한 결과, 고분자와 전자수용체의 영향과는 무관하게 분리성능을 내지 못하는 것으로 분석되었으며, 이는 분리성능에 전구체의 음이온이 결정적 역할을 하는 것으로 분석되었다.

재사용이 가능한 나노복합재료 Fe3O4-ACCS-Ag의 제조 및 항균 특성 평가 (Investigation of Synthesis and Antibacterial Properties of a Magnetically Reusable Fe3O4-ACCS-Ag Nanocomposite)

  • 심재홍;김해원;김진원;서영석;오세강;조민;박정희;오병택
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권3호
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, Fe3O4-ACCS-Ag nanoparticles (NPs) were successfully synthesized using silica extracted from corn cob ash. The synthesized Fe3O4-ACCS-Ag NPs were characterized using X-ray diffraction (XRD), scanning electron microscopyenergy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR). In addition, the potential application of Fe3O4-ACCS-Ag NPs as an antibacterial material in water disinfection was investigated using Escherichia coli ATCC 8739 as model bacteria. The antibacterial activity of synthesized composite material showed 99.9% antibacterial effect within 20 min for the tested bacteria. From this experiment, the synthesized Fe3O4-ACCS-Ag nanocomposites also hold magnetic properties and could be easily recovered from the water solution for its reuse. The reused nanocomposites presented the decreasing antibacterial efficiencies with the reuse cycle but the composite used three times still killed 90% of bacteria in 20 min.

Molecular and Morphological Evidence of Hepatotoxicity after Silver Nanoparticle Exposure: A Systematic Review, In Silico, and Ultrastructure Investigation

  • Sooklert, Kanidta;Wongjarupong, Asarn;Cherdchom, Sarocha;Wongjarupong, Nicha;Jindatip, Depicha;Phungnoi, Yupa;Rojanathanes, Rojrit;Sereemaspun, Amornpun
    • Toxicological Research
    • /
    • 제35권3호
    • /
    • pp.257-270
    • /
    • 2019
  • Silver nanoparticles (AgNPs) have been widely used in a variety of applications in innovative development; consequently, people are more exposed to this particle. Growing concern about toxicity from AgNP exposure has attracted greater attention, while questions about nanosilver-responsive genes and consequences for human health remain unanswered. By considering early detection and prevention of nanotoxicology at the genetic level, this study aimed to identify 1) changes in gene expression levels that could be potential indicators for AgNP toxicity and 2) morphological phenotypes correlating to toxicity of HepG2 cells. To detect possible nanosilver-responsive genes in xenogenic targeted organs, a comprehensive systematic literature review of changes in gene expression in HepG2 cells after AgNP exposure and in silico method, connection up- and down-regulation expression analysis of microarrays (CU-DREAM), were performed. In addition, cells were extracted and processed for transmission electron microscopy to examine ultrastructural alterations. From the Gene Expression Omnibus (GEO) Series database, we selected genes that were up- and down-regulated in AgNPs, but not up- and down-regulated in silver ion exposed cells, as nanosilver-responsive genes. HepG2 cells in the AgNP-treated group showed distinct ultrastructural alterations. Our results suggested potential representative gene data after AgNPs exposure provide insight into assessment and prediction of toxicity from nanosilver exposure.