Browse > Article
http://dx.doi.org/10.5487/TR.2019.35.3.257

Molecular and Morphological Evidence of Hepatotoxicity after Silver Nanoparticle Exposure: A Systematic Review, In Silico, and Ultrastructure Investigation  

Sooklert, Kanidta (Nanomedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University)
Wongjarupong, Asarn (Department of Orthopedics, Queen SavangVadhana Memorial Hospital)
Cherdchom, Sarocha (Nanomedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University)
Wongjarupong, Nicha (Department of Physiology, Faculty of Medicine, Chulalongkorn University)
Jindatip, Depicha (Department of Anatomy, Faculty of Medicine, Chulalongkorn University)
Phungnoi, Yupa (Department of Biology, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University)
Rojanathanes, Rojrit (Department of Chemistry, Faculty of Science, Chulalongkorn University)
Sereemaspun, Amornpun (Nanomedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University)
Publication Information
Toxicological Research / v.35, no.3, 2019 , pp. 257-270 More about this Journal
Abstract
Silver nanoparticles (AgNPs) have been widely used in a variety of applications in innovative development; consequently, people are more exposed to this particle. Growing concern about toxicity from AgNP exposure has attracted greater attention, while questions about nanosilver-responsive genes and consequences for human health remain unanswered. By considering early detection and prevention of nanotoxicology at the genetic level, this study aimed to identify 1) changes in gene expression levels that could be potential indicators for AgNP toxicity and 2) morphological phenotypes correlating to toxicity of HepG2 cells. To detect possible nanosilver-responsive genes in xenogenic targeted organs, a comprehensive systematic literature review of changes in gene expression in HepG2 cells after AgNP exposure and in silico method, connection up- and down-regulation expression analysis of microarrays (CU-DREAM), were performed. In addition, cells were extracted and processed for transmission electron microscopy to examine ultrastructural alterations. From the Gene Expression Omnibus (GEO) Series database, we selected genes that were up- and down-regulated in AgNPs, but not up- and down-regulated in silver ion exposed cells, as nanosilver-responsive genes. HepG2 cells in the AgNP-treated group showed distinct ultrastructural alterations. Our results suggested potential representative gene data after AgNPs exposure provide insight into assessment and prediction of toxicity from nanosilver exposure.
Keywords
Silver nanoparticles; Ultrastructural alterations; Silver-nanoparticle responsive gene; Systematic review;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Brkic Ahmed, L., Milic, M., Pongrac, I.M., Marjanovic, A.M., Mlinaric, H., Pavicic, I., Gajovic, S. and Vinkovic Vrcek, I. (2017) Impact of surface functionalization on the uptake mechanism and toxicity effects of silver nanoparticles in HepG2 cells. Food Chem. Toxicol., 107, 349-361.   DOI
2 Li, Y., Qin, T., Ingle, T., Yan, J., He, W., Yin, J.J. and Chen, T. (2017) Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch. Toxicol., 91, 509-519.   DOI
3 Nallanthighal, S., Chan, C., Bharali, D.J., Mousa, S.A., Vasquez, E. and Reliene, R. (2017) Particle coatings but not silver ions mediate genotoxicity of ingested silver nanoparticles in a mouse model. NanoImpact, 5, 92-100.   DOI
4 Riaz Ahmed, K.B., Nagy, A.M., Brown, R.P., Zhang, Q., Malghan, S.G. and Goering, P.L. (2017) Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol. In Vitro, 38, 179-192.   DOI
5 Wang, J., Che, B., Zhang, L.W., Dong, G., Luo, Q. and Xin, L. (2017) Comparative genotoxicity of silver nanoparticles in human liver HepG2 and lung epithelial A549 cells. J. Appl. Toxicol., 37, 495-501.   DOI
6 Guo, H., Zhang, J., Boudreau, M., Meng, J., Yin, J.J., Liu, J. and Xu, H. (2016) Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Part. Fibre Toxicol., 13, 21.
7 Jakobsen, J.S., Waage, J., Rapin, N., Bisgaard, H.C., Larsen, F.S. and Porse, B.T. (2013) Temporal mapping of CEBPA and CEBPB binding during liver regeneration reveals dynamic occupancy and specific regulatory codes for homeostatic and cell cycle gene batteries. Genome Res., 23, 592-603.   DOI
8 Luedde, T., Duderstadt, M., Streetz, K.L., Tacke, F., Kubicka, S., Manns, M.P. and Trautwein, C. (2004) C/EBP beta isoforms LIP and LAP modulate progression of the cell cycle in the regenerating mouse liver. Hepatology, 40, 356-365.   DOI
9 Li, Y., Ma, J., Fang, Q. and Li, X. (2014) c-fos and c-jun expression in the liver of silver carp and the effect of microcystins. J. Biochem. Mol. Toxicol., 28, 157-166.   DOI
10 Lee, D., Lim, J., Woo, K.C. and Kim, K.T. (2018) Piperonylic acid stimulates keratinocyte growth and survival by activating epidermal growth factor receptor (EGFR). Sci. Rep., 8, 162.   DOI
11 Brzoska, K., Meczynska-Wielgosz, S., Stepkowski, T.M. and Kruszewski, M. (2015) Adaptation of HepG2 cells to silver nanoparticles-induced stress is based on the pro-proliferative and anti-apoptotic changes in gene expression. Mutagenesis, 30, 431-439.   DOI
12 Jiao, Z.H., Li, M., Feng, Y.X., Shi, J.C., Zhang, J. and Shao, B. (2014) Hormesis effects of silver nanoparticles at noncytotoxic doses to human hepatoma cells. PLoS ONE, 9, e102564.   DOI
13 Stepkowski, T.M., Brzoska, K. and Kruszewski, M. (2014) Silver nanoparticles induced changes in the expression of NF-kappaB related genes are cell type specific and related to the basal activity of NF-kappaB. Toxicol. In Vitro, 28, 473-478.   DOI
14 Kawata, K., Osawa, M. and Okabe, S. (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol., 43, 6046-6051.   DOI
15 Xin, L., Wang, J., Wu, Y., Guo, S. and Tong, J. (2015) Increased oxidative stress and activated heat shock proteins in human cell lines by silver nanoparticles. Hum. Exp. Toxicol., 34, 315-323.   DOI
16 Garcia-Reyero, N., Kennedy, A.J., Escalon, B.L., Habib, T., Laird, J.G., Rawat, A., Wiseman, S., Hecker, M., Denslow, N., Steevens, J.A. and Perkins, E.J. (2014) Differential effects and potential adverse outcomes of ionic silver and silver nanoparticles in vivo and in vitro. Environ. Sci. Technol., 48, 4546-4555.   DOI
17 Zhao, T., Zhu, Y., Morinibu, A., Kobayashi, M., Shinomiya, K., Itasaka, S., Yoshimura, M., Guo, G., Hiraoka, M. and Harada, H. (2014) HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci. Rep., 4, 3793.
18 Sahu, S.C., Zheng, J., Yourick, J.J., Sprando, R.L. and Gao, X. (2015) Toxicogenomic responses of human liver HepG2 cells to silver nanoparticles. J. Appl. Toxicol., 35, 1160-1168.   DOI
19 Ahmed, M.M. and Hussein, M.M.A. (2017) Neurotoxic effects of silver nanoparticles and the protective role of rutin. Biomed. Pharmacother., 90, 731-739.   DOI
20 Felizola, S.J., Nakamura, Y., Arata, Y., Ise, K., Satoh, F., Rainey, W.E., Midorikawa, S., Suzuki, S. and Sasano, H. (2014) Metallothionein-3 (MT-3) in the human adrenal cortex and its disorders. Endocr. Pathol., 25, 229-235.   DOI
21 Liu, W., Worms, I.A.M., Herlin-Boime, N., Truffier-Boutry, D., Michaud-Soret, I., Mintz, E., Vidaud, C. and Rollin-Genetet, F. (2017) Interaction of silver nanoparticles with metallothionein and ceruloplasmin: impact on metal substitution by Ag(i), corona formation and enzymatic activity. Nanoscale, 9, 6581-6594.   DOI
22 Kim, S., Choi, J.E., Choi, J., Chung, K.H., Park, K., Yi, J. and Ryu, D.Y. (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro, 23, 1076-1084.   DOI
23 Noronha, V.T., Paula, A.J., Duran, G., Galembeck, A., Cogo-Muller, K., Franz-Montan, M. and Duran, N. (2017) Silver nanoparticles in dentistry. Dent. Mater., 33, 1110-1126.   DOI
24 Pugazhendhi, A., Prabakar, D., Jacob, J.M., Karuppusamy, I. and Saratale, R.G. (2017) Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb. Pathog., 114, 41-45.   DOI
25 Rai, M., Ingle, A.P., Paralikar, P., Gupta, I., Medici, S. and Santos, C.A. (2017) Recent advances in use of silver nanoparticles as antimalarial agents. Int. J. Pharm., 526, 254-270.   DOI
26 Vimbela, G.V., Ngo, S.M., Fraze, C., Yang, L. and Stout, D.A. (2017) Antibacterial properties and toxicity from metallic nanomaterials. Int. J. Nanomedicine, 12, 3941-3965.   DOI
27 Yan, H.T., Shinka, T., Sato, Y., Yang, X.J., Chen, G., Sakamoto, K., Kinoshita, K., Aburatani, H. and Nakahori, Y. (2007) Overexpression of SOX15 inhibits proliferation of NT2/D1 cells derived from a testicular embryonal cell carcinoma. Mol. Cells, 24, 323-328.
28 Tamura, G., Olson, D., Miron, J. and Clark, T.G. (2005) Tolloid-like 1 is negatively regulated by stress and glucocorticoids. Brain Res. Mol. Brain Res., 142, 81-90.   DOI
29 Reshma, V.G., Syama, S., Sruthi, S., Reshma, S.C., Remya, N.S. and Mohanan, P.V. (2017) Engineered Nanoparticles with Antimicrobial Property. Curr. Drug Metab., 18, 1040-1054.   DOI
30 Mishra, A.R., Zheng, J., Tang, X. and Goering, P.L. (2016) Silver nanoparticle-induced autophagic-lysosomal disruption and nlrp3-inflammasome activation in HepG2 cells is size-dependent. Toxicol. Sci., 150, 473-487.   DOI
31 Fuchs, Y. and Steller, H. (2015) Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat. Rev. Mol. Cell Biol., 16, 329-344.   DOI
32 Zielinska, E., Tukaj, C., Radomski, M.W. and Inkielewicz-Stepniak, I. (2016) Molecular mechanism of silver nanoparticles-induced human osteoblast cell death: protective effect of inducible nitric oxide synthase inhibitor. PLoS ONE, 11, e0164137.   DOI
33 Miyayama, T., Fujiki, K. and Matsuoka, M. (2018) Silver nanoparticles induce lysosomal-autophagic defects and decreased expression of transcription factor EB in A549 human lung adenocarcinoma cells. Toxicol. In Vitro, 46, 148-154.   DOI
34 Fewtrell, L., Majuru, B. and Hunter, P.R. (2017) A re-assessment of the safety of silver in household water treatment: rapid systematic review of mammalian in vivo genotoxicity studies. Environ. Health, 16, 66.   DOI
35 Dilnawaz, F., Acharya, S. and Sahoo, S.K. (2018) Recent trends of nanomedicinal approaches in clinics. Int. J. Pharm., 538, 263-278.   DOI
36 Griffin, S., Masood, M.I., Nasim, M.J., Sarfraz, M., Ebokaiwe, A.P., Schafer, K.H., Keck, C.M. and Jacob, C. (2017) Natural nanoparticles: a particular matter inspired by nature. Antioxidants (Basel), 7, E3.   DOI
37 Ebabe Elle, R., Gaillet, S., Vide, J., Romain, C., Lauret, C., Rugani, N., Cristol, J.P. and Rouanet, J.M. (2013) Dietary exposure to silver nanoparticles in Sprague-Dawley rats: effects on oxidative stress and inflammation. Food Chem. Toxicol., 60, 297-301.   DOI
38 Tang, J., Xiong, L., Wang, S., Wang, J., Liu, L., Li, J., Yuan, F. and Xi, T. (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J. Nanosci. Nanotechnol., 9, 4924-4932.   DOI
39 Martins, A.D.C., Jr., Azevedo, L.F., de Souza Rocha, C.C., Carneiro, M.F.H., Venancio, V.P., de Almeida, M.R., Antunes, L.M.G., de Carvalho Hott, R., Rodrigues, J.L., Ogunjimi, A.T., Adeyemi, J.A. and Barbosa, F., Jr. (2017) Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co-exposed to silver and titanium dioxide nanoparticles. J. Toxicol. Environ. Health A, 80, 1156-1165.   DOI
40 Filipak Neto, F., Cardoso da Silva, L., Liebel, S., Voigt, C.L. and Oliveira Ribeiro, C.A. (2018) Responses of human hepatoma HepG2 cells to silver nanoparticles and polycyclic aromatic hydrocarbons. Toxicol. Mech. Methods, 28, 69-78.   DOI