• Title/Summary/Keyword: AgNPs

Search Result 121, Processing Time 0.023 seconds

In vitro effect of silver nanoparticles on avian spermatozoa

  • Karashi, Naser;Farzinpour, Amjad;Vaziry, Asaad;Farshad, Abbas
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.649-655
    • /
    • 2021
  • Nanotechnology is widely considered a major technology of the twenty-first century. Nanoparticles (NPs) has been shown to pass through reproductively significant biological barriers such as the blood-testicle and placental barriers. Thus, the purpose of this study was to determine the effect of silver Nanoparticles (Ag-NPs) on sperm-egg interaction and spermatozoa quality parameters in quail spermatozoa. Semen was suspended in Ringer solution containing Ag-NPs levels at 5.5 × 106 sperm/ml (0, 0.01, 0.1, 1 and 10 ppm). The results indicated that when sperm were counted at 0.1 ppm, the number of holes formed on the inner perivitelline layer was significantly increased compared to the control. The 10 ppm group had a significant reduction in sperm viability. At 0.1 and 1 ppm, the membrane integrity was significantly decreased (P < 0.05). All treatments (except 0.01 ppm Ag-NPs) had a significant (P < 0.05) effect on the percentage of spermatozoa with an intact acrosome when compared to the control group. At 0.1, 1, and 10 ppm Ag-NPs, morphological defects in the acrosome were observed. As a result, Ag-NPs is likely capable of destroying the acrosome membrane. This research indicates that Ag-NPs may be cytotoxic to spermatozoa by impairing sperm functionality and increasing sperm mortality.

Cell Death by Polyvinylpyrrolidine-Coated Silver Nanoparticles is Mediated by ROS-Dependent Signaling

  • Kang, Kyeong-Ah;Jung, Hye-Youn;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.399-405
    • /
    • 2012
  • Silver nanoparticles (AgNPs) are widely used nanoparticles and they are mainly used in antibacterial and personal care products. In this study, we evaluated the effect of AgNPs on cell death induction in the murine dendritic cell line DC2.4. DC2.4 cells exposed to AgNPs showed a marked decrease in cell viability and an induction of lactate dehydrogenase (LDH) leakage in a time- and dose-dependent manner. In addition, AgNPs promoted reactive oxygen species (ROS)-dependent apoptosis and AgNP-induced ROS triggered a decrease in mitochondrial membrane potential. The activation of the intracellular signal transduction pathway was also observed in cells cultured with AgNPs. Taken together, our data demonstrate that AgNPs are able to induce a cytotoxic effect in DCs through ROS generation. This study provides important information about the safety of AgNPs that may help in guiding the development of nanotechnology applications.

Antioxidative and antiproliferative effects of propolis-reduced silver nanoparticles

  • Tan, Gamze;Ilk, Sedef;Foto, Fatma Z.;Foto, Egemen;Saglam, Necdet
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.139-150
    • /
    • 2021
  • In this study, phytochemicals present in Propolis Extract (PE) were employed as reducing and stabilizing reagents to synthesize silver nanoparticles. Three propolis-reduced silver nanoparticles (P-AgNPs1-3) were synthesized using increasing amounts of PE. P-AgNPs were treated with different cancer cells-lung (A549), cervix (HeLa) and colon (WiDr) - for 24, 48 and 72 h to evaluate their anti-proliferative activities. A non-cancerous cell type (L929) was also used to test whether suppressive effects of P-AgNPs on cancer cell proliferation were due to a general cytotoxic effect. The characterization results showed that the bioactive contents in propolis successfully induced particle formation. As the amount of PE increased, the particle size decreased; however, the size distribution range expanded. The antioxidant capacity of the particles increased with increased propolis amounts. P-AgNP1 exhibited almost equal inhibitory effects across all cancer cell types; however, P-AgNP2 was more effective on HeLa cells. P-AgNPs3 showed greater inhibitory effects in almost all cancer cells compared to other NPs and pure propolis. Consequently, the biological effects of P-AgNPs were highly dependent on PE amount, NP concentration, and cell type. These results suggest that AgNPs synthesized utilizing propolis phytochemicals might serve as anti-cancer agents, providing greater efficacy against cancer cells.

A Novel Approach for Sericin-Conjugated Silver Nanoparticle Synthesis and Their Potential as Microbicide Candidates

  • Lv, Xiaowen;Wang, Huanru;Su, Airong;Chu, Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1367-1375
    • /
    • 2018
  • Silver nanoparticles have been widely applied for biomedical areas owing to their potent antiviral and antibacterial activities. Synthesis of silver nanoparticles using biomacromolecules is more efficient, environment-friendly, and cost-saving compared with the traditional approach. In this paper, a novel approach was developed to establish a reaction system with $Ag^+-BH4^--sericin$ to synthesize silver nanoparticles conjugated to sericin (AgNPs-Sericin). Sericin could be as a good dispersant and stabilizing agent, which is able to modify nanoscaled AgNPs, the average diameter of which was only $3.78{\pm}1.14nm$ prepared in a 0.3 mg/ml sericin solution. The characterizations of the AgNPs-Sericin were determined by FTIR, thermogravimetry, and XRD analyses. The results showed that the synthesized AgNPs conjugated with sericin as organic phase. Via SAED and XRD analysis, we showed that these AgNPs formed polycrystalline powder with a face-centered cubic structure of bulk metals. Moreover, we investigated the antiviral and antibacterial activities of AgNPs-Sericin, and the results showed that AgNPs-Sericin exhibited potent anti-HIV-1 activity against CCR5-tropic and CXCR4-tropic strains, but no significant cytotoxicity was found toward human genital epithelial cells compared with free silver ions, which are accepted as a commonly used potent antimicrobial agent. Moreover, its antibacterial activity was determined via flow cytometry. The results showed that AgNPs-Sericin could suppress gram-negative (E. coli) and gram-positive (S. aureus) bacteria, but more was potent for the gram-negative one. We concluded that our AgNPs-Sericin could be a potential candidate as a microbicide or antimicrobial agent to prevent sexually transmitted infections.

Easy Preparation of Nanosilver-Decorated Graphene Using Silver Carbamate by Microwave Irradiation and Their Properties

  • Yun, Sang-Woo;Cha, Jae-Ryung;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2251-2256
    • /
    • 2014
  • We have successfully decorated reduced graphene oxide (RGO) with silver nanoparticles (AgNPs) by microwaving silver alkylcarbamate for 13 seconds using 1-amino-4-methylpiperazine. Uniform AgNPs (20-40 nm) were effectively prepared, and 1-amino-4-methylpiperazine acted as a reaction medium, reducing agent, and stabilizer. Particle size and morphology were correlated with the silver alkylcarbamate concentration and microwave time. The graphene/AgNPs composites were characterized by Raman, X-ray diffraction, and scanning electron microscopy to confirm that the AgNPs were uniformly decorated onto the graphene. Measurements of the transparent conductive property at room temperature indicated that these graphene/AgNPs nanosheets with 55.45% transmittance were electrically continuous with a sheet resistance of approximately $43{\Omega}/{\Box}$.

Facile Preparation of Nanosilver-decorated MWNTs Using Silver Carbamate Complex and Their Polymer Composites

  • Park, Heon-Soo;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.483-488
    • /
    • 2012
  • We successfully decorated multi-wall carbon nanotubes (MWNTs) with silver by reacting Ag-NPs with thiolfunctionalized MWNT-SH. Ag alkylcarbamate complex was used as an Ag precursor. Uniform Ag-NPs (5-10 nm) were effectively prepared by microwaving within 60 s using 1-amino-4-methylpiperazine (AMP), which acts as a reaction medium, reducing agent, and stabilizer. The MWNTs were functionalized with 2-aminoethanethiol. Exploiting the chemical affinity between thiol and Ag-NPs, Ag-MWNT nanohybrids were obtained by spontaneous chemical adsorption of MWNT-SH to Ag through Ag-S bonds. The Ag-S-MWNTs were characterized by TGA, XRD, and TEM to confirm that Ag-NPs were uniformly decorated onto the MWNTs. The Ag-S-MWNTs were then employed as conducting filler in epoxy resin to fabricate electrically conducting polymer composites. The electrical properties of the composites were measured and compared with that containing MWNT-SH. The electrical conductivity of composites containing 0.4 wt % Ag-S-MWNT was four orders of magnitude higher than those containing same content of MWNT-SH, confirming Ag-S-MWNT as an effective conducting filler.

Novel Antibacterial, Cytotoxic and Catalytic Activities of Silver Nanoparticles Synthesized from Acidophilic Actinobacterial SL19 with Evidence for Protein as Coating Biomolecule

  • Wypij, Magdalena;Ostrowski, Maciej;Piska, Kamil;Wojcik-Pszczola, Katarzyna;Pekala, Elzbieta;Rai, Mahendra;Golinska, Patrycja
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1195-1208
    • /
    • 2022
  • Silver nanoparticles (AgNPs) have potential applications in medicine, photocatalysis, agriculture, and cosmetic fields due to their unique physicochemical properties and strong antimicrobial activity. Here, AgNPs were synthesized using actinobacterial SL19 strain, isolated from acidic forest soil in Poland, and confirmed by UV-vis and FTIR spectroscopy, TEM, and zeta potential analysis. The AgNPs were polydispersed, stable, spherical, and small, with an average size of 23 nm. The FTIR study revealed the presence of bonds characteristic of proteins that cover nanoparticles. These proteins were then studied by using liquid chromatography with tandem mass spectrometry (LC-MS/MS) and identified with the highest similarity to hypothetical protein and porin with molecular masses equal to 41 and 38 kDa, respectively. Our AgNPs exhibited remarkable antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. The combined, synergistic action of these synthesized AgNPs with commercial antibiotics (ampicillin, kanamycin, streptomycin, and tetracycline) enabled dose reductions in both components and increased their antimicrobial efficacy, especially in the case of streptomycin and tetracycline. Furthermore, the in vitro activity of the AgNPs on human cancer cell lines (MCF-7, A375, A549, and HepG2) showed cancer-specific sensitivity, while the genotoxic activity was evaluated by Ames assay, which revealed a lack of mutagenicity on the part of nanoparticles in Salmonella Typhimurium TA98 strain. We also studied the impact of the AgNPs on the catalytic and photocatalytic degradation of methyl orange (MO). The decomposition of MO was observed by a decrease in intensity of absorbance within time. The results of our study proved the easy, fast, and efficient synthesis of AgNPs using acidophilic actinomycete SL19 strain and demonstrated the remarkable potential of these AgNPs as anticancer and antibacterial agents. However, the properties and activity of such particles can vary by biosynthesized batch.

Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi

  • Kim, Sang-Woo;Jung, Jin-Hee;Lamsal, Kabir;Kim, Yun-Seok;Min, Ji-Seon;Lee, Youn-Su
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.

Canna edulis Leaf Extract-Mediated Preparation of Stabilized Silver Nanoparticles: Characterization, Antimicrobial Activity, and Toxicity Studies

  • Otari, S.V.;Pawar, S.H.;Patel, Sanjay K.S.;Singh, Raushan K.;Kim, Sang-Yong;Lee, Jai Hyo;Zhang, Liaoyuan;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.731-738
    • /
    • 2017
  • A novel approach to synthesize silver nanoparticles (AgNPs) using leaf extract of Canna edulis Ker-Gawl. (CELE) under ambient conditions is reported here. The as-prepared AgNPs were analyzed by UV-visible spectroscopy, transmission emission microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, energy-dispersive analysis of X-ray spectroscopy, zeta potential, and dynamic light scattering. The AgNPs showed excellent antimicrobial activity against various pathogens, including bacteria and various fungi. The biocompatibility of the AgNPs was analyzed in the L929 cell line using NRU and MTT assays. Acridine orange/ethidium bromide staining was used to determine whether the AgNPs had necrotic or apoptotic effects on L929 cells. The concentration of AgNPs required for 50% inhibition of growth of mammalian cells is far more than that required for inhibition of pathogenic microorganisms. Thus, CELE is a candidate for the eco-friendly, clean, cost-effective, and nontoxic synthesis of AgNPs.

Involvement of Caenohabditis elegans MAPK Signaling Pathways in Oxidative Stress Response Induced by Silver Nanoparticles Exposure

  • Roh, Ji-Yeon;Eom, Hyun-Jeong;Choi, Jin-Hee
    • Toxicological Research
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • In the present study, toxicity of silver nanoparticles (AgNPs) was investigated in the nematode, Caenohabditis elegans focusing on the upstream signaling pathway responsible for regulating oxidative stress, such as mitogen-activated protein kinase (MAPK) cascades. Formation of reactive oxygen species (ROS) was observed in AgNPs exposed C.elegans, suggesting oxidative stress as an important mechanism in the toxicity of AgNPs towards C. elegans. Expression of genes in MAPK signaling pathways increased by AgNPs exposure in less than 2-fold compared to the control in wildtype C.elegans, however, those were increased dramatically in sod-3 (gk235) mutant after 48 h exposure of AgNPs (i.e. 4-fold for jnk-1 and mpk-2; 6-fold for nsy-1, sek-1, and pmk-1, and 10-fold for jkk-1). These results on the expression of oxidative stress response genes suggest that sod-3 gene expression appears to be dependent on p38 MAPK activation. The high expressions of the pmk-1 gene 48 h exposure to AgNPs in the sod-3 (gk235) mutant can also be interpreted as compensatory mechanisms in the absence of important stress response genes. Overall results suggest that MAPK-based integrated stress signaling network seems to be involved in defense to AgNPs exposure in C.elegans.