• Title/Summary/Keyword: Ag-paste

Search Result 221, Processing Time 0.03 seconds

Analysis of the Physical Properties of the Conductive Paste according to the Type of Binder Resin and Simulation of Mechanical Properties according to Ag Flake Volume Fraction (바인더 수지 종류에 따른 도전성 페이스트의 물성 분석 및 Ag flake 부피 분율에 따른 기계적 특성 시뮬레이션 연구)

  • Sim, Ji-Hyun;Yun, Hyeon-Seong;Yu, Seong-Hun;Park, Jong-Su;Jeon, Seong-Min;Bae, Jin-Seok
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.69-74
    • /
    • 2022
  • In this study, the conductive paste used in a wide range such as wiring in the electronic packaging field, the automobile industry, and electronic products is manufactured under various process conditions due to the simplicity of the process, and then the thermal, mechanical, and electrical characteristics are analyzed and simulation studies are conducted to optimize the process. to establish the conditions of the conductive paste manufacturing process. First, a conductive paste was prepared by setting various types of binder resin, an essential component of the conductive paste, and characteristics such as thermal conductivity, tensile strength, and elongation were analyzed. Among the binder resins, the conductive paste applied with a flexible epoxy material had the best physical properties, and a simulation study was conducted based on the physical property data base of the conductive face. As a result of the simulation, the best physical properties were exhibited when the Ag flake volume fraction was 60%.

Ag Paste Using Ag Nanowires

  • Hong, Jun-Ui;Kim, Dae-Jin;Kong, Byung-Seon;Kim, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.546-546
    • /
    • 2012
  • Traditional screen printing is still a dominant method to print electrodes on c-Si solar cells. In order to achieve higher efficiency for c-Si solar cells, improvement of the electrode material is one of the key approaches. Shadowing loss can be reduced by using high aspect ratio finger electrode with width of finger electrode less than 80um. The rheological properties of Ag paste for applying c-Si solar cells are improved by using Ag nanowires. The printing properties including the aspect ratio of printed electrode can be improved with higher Thixotropic index (T.I.) values.

  • PDF

Determination of Ag(Ⅰ) Ion with a Chemically Modified Carbon Paste Electrode Containing Cinchonidine (Cinchonidine으로 변성된 Carbon Paste 전극을 사용한 은이온의 정량)

  • Kim, Sin Hui;Won, Mi Suk;Sim, Yun Bo
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.10
    • /
    • pp.734-740
    • /
    • 1994
  • Electrochemical determination of Ag(I) ion was carried out by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) with the carbon paste electrode (CPE) containing cinchonidine. The detection limit for Ag(I) ion was shown to be $1.0 {\times}10^{-6}$ M in conventional CV and up to $8.0{\times}10^{-9}$ M (${\pm}$0.6%) using DPV. The optimum analytical condition of Ag(I) ion was determined as follows: pH 7, 20 minutes of deposition time, and 50% (w/w) cinchonidine to carbon powder composition of electrode. The interference effect of various metal ions added to the deposition solution was also studied. The peak current of Ag(I) ion except Hg(II) ion was decreased roughly 25% compare to Ag(I) ion only. When Mn(II) ion was present in sample solution at pH 9, shown a large interference effect.

  • PDF

Sonochemical Synthesis of Copper-silver Core-shell Particles for Conductive Paste Application (초음파를 이용한 구리-은 코어-쉘의 합성 및 전도성 페이스트 적용)

  • Sim, Sang-Bo;Han, Jong-Dae
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.782-788
    • /
    • 2018
  • Submicron copper-silver core-shell (Cu@Ag) particles were synthesized using the sonochemical combined transmetallation reaction and the application to printed electronics as a low cost conductive paste was evaluated. $Cu_2O$ of the $Cu_2O/Cu$ composite used as a core in the reaction for the synthesis of core-shell was sonochemically reduced to Cu, and Cu atoms functioned as a reducer for silver ions in transmetallation to achieve the copper-silver core-shell structure. The characterization of submicron particles by TEM-EDS and TG-DSC confirmed the core-shell structure. Conductive pastes in which 70 wt% Cu@Ag was dispersed in solvents were prepared using a binder and wetting agents, and coated on the polyamide film using a screen-printing method. Printed paste films containing synthesized Cu@Ag particles with 8 at% and 16 at% Ag exhibited low resistivity of 96.2 and $38.4{\mu}{\Omega}cm$ after sintering at $180^{\circ}C$ in air, respectively.

A Study on the Ball-off of Via Balls Bonded by Solder Paste (Solder Paste로 접합된 비아볼의 Ball-off에 관한 연구)

  • Kim, Kyoung-Su;Kim, Jin-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.575-579
    • /
    • 2004
  • Package reliability test was conducted to investigate the effect of solder paste composition at BGA Package. It was found that the shape and size of the phase form are affected by the processing parameters. The material have used to fill in the via was Sn/36Pb/2Ag and Sn/0.75Cu type solder paste. Sn/36Pb/2Ag and Sn/0.75Cu paste were fabricated on Tape-BGA substrates by screen printing process, and via ball mount data were characterized with variations of dwell time of 85 seconds at reflow peak temperature at 22$0^{\circ}C$ or 24$0^{\circ}C$. The test condition was MRT 30 $^{\circ}C$/60 %RH/96 HR. Failures formed of a ball-off in solder paste process were observed by using a Optical Microscope and SEM(Scanning Electron Microscope). It was concluded that intermetallic layer growth played important roles in increasing solder fatigue strength for addition of Ag composition. The degradation of shear strength of solder composition is discussed.

Effect of Frit Content in Ag Paste on the Discoloration of Transparent Dielectric in PDP

  • Jeon, Jae-Sam;Kim, Hyung-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1248-1251
    • /
    • 2005
  • In PDP, a transparent dielectric is formed on a front glass substrate so as to cover bus electrodes (Ag). During the fabrication process, sometimes, a transparent dielectric reacts with bus (Ag) electrode in the range of $560-600^{\circ}C$, and the reaction gives the dielectric its yellow coloration, what is called "yellowing phenomena". In this paper, we investigated the reaction between bus electrode and transparent dielectric covered with different frit content in Ag paste.

  • PDF

Electrical Properties of Solar Cells With the Reactivity of Ag pastes and Si Wafer (Ag paste와 실리콘 웨이퍼의 반응성에 따른 태양전지의 전기적 성질)

  • Kim, Dong-Sun;Hwang, Seong-Jin;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.54-54
    • /
    • 2009
  • Ag thick film has been used for electrode materials with the excellent conductivity. Ag electrode is used in screen-printed silicon solar cells as a electrode material. Compared to photolithography and buried-contact technology, screen-printing technology has the merit of fabricating low-priced cells and enormous cells in a few hours. Ag paste consists of Ag powders, vehicles and additives such as frits, metal powders (Pb, Bi, Zn). Frits accelerate the sintering of Ag powders and induce the connection between Ag electrode and Si wafer. Thermophysical properties of frits and reactions among Ag, frits and Si influence on cell performance. In this study, Ag pastes were fabricated with adding different kinds of frits. After Ag pastes were printed on silicon wafer by screen-printing technology, the cells were fired using a belt furnace. The cell parameters were measured by light I-V to determine the short-circuit current, open-circuit voltage, FF and cell efficiency. In order to study the relationship between the reactivity of Ag, frit, Si and the electrical properties of cells, the reaction of frits and Si wafer on was studied with thermal properties of frits. The interface structure between Ag electrode and Si wafer were also measured for understanding the reactivity of Ag, frit and Si wafer. The excessive reactivity of Ag, frit and Si wafer certainly degraded the electrical properties of cells. These preliminary studies suggest that reactions among Ag, frits and Si wafer should optimally be controlled for cell performances.

  • PDF

A Study on Rheology Characteristics of Ag Paste for Screen Printing Method for Silicon Solar Cells Electrodes Capable of Forming High Aspect Ratio (고온 소결형 실리콘 태양 전지의 High Aspect Ratio 전극 형성이 가능한 Ag 페이스트의 레오로지 특성 연구)

  • Oh, Tae-Hun;Kim, Sung-Bin;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2010
  • Photovoltaic solar cells are all in the incident because they are not converted into electrical energy, high-efficiency solar cells in order to reduce the loss of elements must be. Significant factor in the loss of solar cells, optical loss and electrical loss can be divided into. Optical losses occur when the sun will be joined on the surface of the reflection, the shadow loss due to electrodes, and the losses are in the solar wavelengths. Commercialization is currently the most common solar cells on the front of the light incident on the electrode is formed. Therefore, the shadow caused by the electrode to cover the dead area of the sun, due to factors that hinder the absorption of sunlight which is shadowing them and conversion efficiency of solar cells is the inhibition factor. These barriers to eliminate the electrode linewidth reduces the shadowing to reduce, but simply of the electrode line width is reduced electrode area by reducing the series resistance elevates this because to improve the electrode Aspect ratio(height/width) to increase Ag development of paste is required. In this study, aspect ratio of screen-printing method to increase the electrode Ag paste composition of the binder for the characterization of rheology in the shadow of the electrode by reducing the optical loss of the photoelectric conversion efficiency of solar cells to boost the performance measures was. Properties and printability of the paste, the binder resin sintered characteristics that affect the thermal properties are excellent with a good screen printability acrylic resin, ethyl cellulose, using a resin were evaluated. Prepared paste rheology properties, was formed to evaluate the electrode conductivity and aspect ratio.

Formation of Black Matrix and Ag Electrode Patterns by Photolithographic Process for High Resolution PDP

  • So, Jae-Yong;Kwon, Hyeok-Yong;Kim, Suk-Kyung;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.369-372
    • /
    • 2008
  • Black matrix and Ag electrode with uniform line pitches were successfully fabricated through the photolithographic process by using the photosensitive black pastes and Ag pastes with optimized photosensitive properties for high resolution PDPs. The photosensitivity of the black and Ag pastes in the photolithographic process was investigated with the variation of photosensitive BM and Ag pastes and the photolithography process conditions. The important components and formulation of the photosensitive BM and Ag paste we discussed.

  • PDF

Soldering characteristics of Ag-Pd electrodes in relationship to differing particle size of LTCC substrate (LTCC 기판의 Particle Size 에 따른 Ag-Pd 전극의 Soldering 특성 변화)

  • 조현민;유명재;박종철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.130-133
    • /
    • 2002
  • Solder leaching resistance of the metal electrode is an important factor with regard to adhesion properties of ceramic substrate. In the Low Temperature Co-fired Ceramics (LTCC), Ag-Pd or Ag-Pt pastes are used instead of pure Ag paste to prevent leaching. Solder leaching behavior of the Ag-Pd paste in relation to LTCC raw material powder size was investigated. First fabrication of LTCC green tape with different particle size was done. LTCC substrates with Ag-Pd electrode were prepared using conventional multilayer ceramic process. Dipping test was performed to test solder leaching behavior of the electrode. Ag-Pd electrode on LTCC substrate with smaller particle size achieved higher solder leaching resistance.

  • PDF