• Title/Summary/Keyword: Ag-Pd

Search Result 221, Processing Time 0.024 seconds

Synthesis of Ag-Pd Electrode having Oxide Additive (산화물을 첨가한 Ag-Pd 전극의 제조)

  • Lee, Jae-Seok;Lee, Dong-Yoon;Song, Jae-Sung;Kim, Myoung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.735-738
    • /
    • 2003
  • Downsizing electronics requires precision position control with an accuracy of sub-micron order, which demands development of ultra-fine displacive devices. Piezoelectric transducer is one of devices transferring electric field energy into mechanical energy and being capable for fine displacement control. The transducer has been widely used as fine Position control device Multilayer piezoelectric actuator, one of typical piezo-transducer, is fabricated by stacking alternatively ceramic and electrode layers several hundred times followed by cofiring process. Electrode material should be tolerable in the firing process maintaining at ceramic-sintering temperatures up to $1100{\sim}1300^{\circ}C$. Ag-Pd can be used as stable electrode material in heat treatment above $960^{\circ}C$. Besides, adding small quantity ceramic powder allow the actuator to be fabricated in a good shape by diminishing shrinkage difference between ceramic and electrode layers, resulting in avoidance of crack and delamination at and/or nearby interface between ceramic an electrode layers. This study presents synthesis of nano-oxide-added Ag/Pd powders and its feasibility to candidate material tolerable at high temperature. The powders were formed in a co-precipitation process of Ag and Pd in nano-oxide-dispersed solution where Ag and Pd precursors are melted in $HNO_3$ acid.

  • PDF

Hydrogen Perm-Selectivity Properties of the Pd-Ni-Ag Alloy Hydrogen Separation Membranes with Various Surface Nickel Composition (표면 니켈 조성에 따른 팔라듐-니켈-은 합금 수소분리막의 수소투과선택 특성)

  • Lim, Da-Sol;Kim, Se-Hong;Kim, Do-Hui;Cho, Seo-Hyun;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.277-290
    • /
    • 2018
  • In this study, Pd-Ni-Ag alloy hydrogen separation membranes were fabricated by Pd/Ag/Pd/Ni/Pd multi-layer sputter deposition on the modified MIM(Metal Injection Molding)-PSS(Porous Stainless Steel) support and followed heat treatment. Nickel, used as an alloying element in Pd alloy membranes, is inexpensive and stable material in a hydrogen isotope environment at high temperature up to 1123 K. Hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes is affected not only by composition of membrane films but also by other factors such as surface properties of PSS support, microstructure of membrane films and inter-diffused impurities from PSS support. In order to clarify the effect of surface Ni composition on hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes, the other effects were significantly minimized by the formation of dense and homogeneous Pd-Ni-Ag alloy membranes. Hydrogen permeation test showed that hydrogen permeability decreased from $7.6{\times}10^{-09}$ to $1.02{\times}10^{-09}mol/m{\cdot}s{\cdot}Pa^{0.5}$ as Ni composition increased from 0 to 16 wt% and the selectivity for $H_2/N_2$ was infinite.

Study on the Corrosin Properties of Au-Ag-Cu Dental Alloys (치과용 Au-Ag-Cu계 합금의 부식특성에 관한 연구)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.14 no.1
    • /
    • pp.23-43
    • /
    • 1992
  • Corrosion characteristics of four commerial gold-based dental alloys(C-1; Au75%, Ag13.9%, Pd3%, Cu & etc.,8.1%, C-2 ;Au 52.08, Ag 24%, Pd 5%, Cu & etc.,18.92, C-3 ; Au 53%, Ag 22%, Pd 5%, Pt 3% Cu & etc.,17%, C-4 ; Au 53%, Pd4, Pt1.5%, Ag & Cu & etc.,41.5%) and four experimental ternary Au-Ag-Cu alloys(E-1 ; Au 50%, Ag 30%, Cu 20%, E-2 ; Au 50%, Ag 20%, Cu 30%, E-3 ; Au 50%, Ag 10%, Cu 40%, E-4 ; Au 50%, Ag 40%, Cu 10%) were investigated by potentiodynamic polarization analysis and the structure was examined by optical microscope and SEM. All corrosion testing was conducted in 1% NaCl solution. The main results are as follows : 1. The corrosion resistence of commercial alloys was decreased in the order of C-1, C-3, C-4, C-2. C-2. 2. The E-1 and E-3 ternary alloys exhibits the higher corrosion resistence than E-2 and E-4 alloys. 3. The cast microstructure of alloys reveals dendrite morphology which shows the significant microsegregation caused by the difference in the diffusion rate between liquid and solid. 4. It is found that the surface corrosion products were mainly AgCl by X-ray diffraction results.

  • PDF

Reliability of Joint Between Solder Bump and Ag-Pd Thick Film Conductor and Interfacial Reaction (솔더범프와 Ag-Pd 후막도체의 접합 신뢰성 및 계면반응)

  • Kim Gyeong Seop;Lee Jong Nam;Yang Taek Jin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.151-155
    • /
    • 2003
  • The requirements for harsh environment electronic controllers in automotive applications have been steadily becoming more and more stringent. Electronic substrate technologists have been responding to this challenge effectively in an effort to meet the performance, reliability and cost requirements. An effect of the plasma cleaning at the alumina substrate and the IMC layer between $Sn-37wt\%Pb$ solder and Ag-Pd thick film conductor after reflow soldering has been studied. Organic residual carbon layer was removed by the substrate plasma cleaning. So the interfacial adhesive strength was enhanced. As a result of AFM measurement, Ag-Pd conductor pad roughness were increased from 304nm to 330nm. $Cu_6Sn_5$ formed during initial ref]ow process at the interface between TiWN/Cu UBM and solder grew by the succeeding reflow process so the grains had a large diameter and dense interval. A cellular-shaped $Ag_3Sn$ was observed at the interface between Ag-Pd conductor pad and solder. The diameters of the $Ag_3Sn$ grains ranged from about $0.1\~0.6{\mu}m$. And a needle-shaped $Ag_3Sn$ was also observed at the inside of the solder.

  • PDF

The Effect of Au Addition on the Hardening Mechanism in Ag-30wt%Pd-10wt%Cu Alloy (Ag-30wt% Pd-10wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效硬化特性))

  • Lee, K.D.;Nam, S.Y.
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.27-41
    • /
    • 1999
  • The Ag-Pd-Cu alloys containing a small amount of Au is commonly used for dental purposes, because this alloy cheaper than Au-base alloys for clinical use. However, the most important characteristic of this alloy is age-hardenability, which is not exhibited by other Ag-base dental alloys. The specimens used were Ag-30Pd-10Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at 350-$550^{\circ}C$ Age-hardening characteristic of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing, X-ray diffraction and electron microscope observations, electrical resistance, differential scanning calorimetric, energy dispersed spectra and electron probe microanalysis. Principal results are as follows ; Maximum hardening occured in two co-phases of ${\alpha}_2$ + PdCu In stage II, decomposition of the $\alpha$ solid solution to a PdCu ordered phase($L1_o$ type) and an Ag-rich ${\alpha}_2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was concluded that the cause of age-hardening in this alloy is the precipitation of the PdCu redered phase, which has AuCu I type face-centered tetragonal structure. Precipitation procedure was ${\alpha}{\to}{\alpha}_1+PdCu{\to}{\alpha}_2+PdCu$ at Pd/Cu = 3 Pd element of Ag-Pd-Cu alloy is more effective dental alloy on anti-corrosion and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

The Effect of Au Addition on the Hardening Mechanism in Ag-25wt% Pd-15wt% Cu (Ag-25wt% Pd-15wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效京華特性))

  • Bea, B.J.;Lee, H.S.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.20 no.1
    • /
    • pp.37-49
    • /
    • 1998
  • The specimens used were Ag-25 Pd-15 Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at $350{\sim}550^{\circ}C$ Age- hardening characteristics of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing. X-ray diffraction and electron microscope observations, electrical resistance, ergy dispersed spectra and electron probe microanalysis. Principal results are as follows : Hardening occured in two stages, i.e., stage I in low temperature and stage II in high temperature regions, during continuous aging. The case of hardening in stage I was due to the formation of the $L1_0$ type face-centered tetragonal PdCu-ordered phase in the grain interior and hardening in stage I was affected by the Cu concentration. In stage II, decomposition of the ${\alpha}$ solid solution to a PdCu ordered phase($L1_0$ type) and an Ag-rich ${\alpha}2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was conclued that the cause of age-hardening in this alloy is the precipitation of the PdCu ordered phase, which has AuCu I type face-centered tetragonal structure. Precipetation procedure was ${\alpha}{\to}{\alpha}+{\alpha}_2+PdCu {\to}{\alpha}_1+{\alpha}_2+PdCu$ at Pd/Cu = 1.7 Ag-Pd-Cu alloy is more effective dental alloy as ageing treatment and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

Study on Reduction of Via hole Pore by Composition variation of Via paste during LTCC Constrained Sintering Process (무수축 LTCC 공정 중 Via Paste의 조성에 따른 Via 주변의 기공감소에 관한 연구)

  • Cho, Hyun-Min;Kim, Jong-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.233-234
    • /
    • 2006
  • In this paper, Via hole pore were investigated during PLAS (PessureLess Assisted Constrained Sintering) process of LTCC. Ag and Ag-Pd paste mixture were tested for via paste. Ag paste with 10~25% Ag-Pd paste showed no via hole pore, but further increase of Ag-Pd contents in via paste increased via pore. From shrinkage curve, 10~25% Ag-Pd paste showed expansion behaviors before shrink and this phenomena result in the reduction of via hole pore during PLAS process.

  • PDF

AN EXPERIMENTAL STUDY OF THE CYTOTOXICITY OF SILVERPALLADIUM ALLOYS UPON GINGIVAL FIBROBLAST BY MEANS OF TISSUE CULTURE (치은 섬유아세포(纖維芽細胞)에 대(對)한 은(銀)-파라디움합금(合金)의 세포독성(細胞毒性)에 관(關)한 연구(硏究))

  • Yoon, In-Tak;Choi, Boo-Byung;Kim, In-Chul
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.21 no.1
    • /
    • pp.9-26
    • /
    • 1983
  • In order to investigate the biocompatibility of silver-palladium alloys, gingival fibroblast was obtained from a healthy human gingival and cultured in MEM medium with the addition of silverpalladium alloys. Four different mixture of silver-palladium alloys comprising of Ag-Pd-Au, Ag-Pd-In and Ag-Sn were tested. Results were assessed by calculating the cell multiplication rate per millimeter of medium and morphological changes in cells were also observed and noted.The obtained results were as follows; 1. Ag-Pd-Au alloy was indicated to be most biocompatible with gingival fibroblast. Also there was a decrease in cytotoxicity of the alloy as the concentration of gold increased. 2. Ag-Pd alloy showed a decrease in cell multiplication rate as compared to Ag-Pd~Au alloy. 3. Silver-palladium alloy supplemented with Indium increased the cell multiplication rate. 4. Among the alloys tested, Ag-Sn alloy was indicated to be the most cytotoxic and the least biocompatible with human gingival fibroblast.

  • PDF

The Effect of Au Addition on the Hardening Mechanism in Ag-20wt% Pd-20wt% Cu (Ag-20wt% Pd-20wt% Cu 3원합금(元合金) 및 Au첨가합금(添加合金)의 시효경화특성(時效硬化特性))

  • Park, M.H.;Bae, B.J.;Lee, H.S.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.19 no.1
    • /
    • pp.21-35
    • /
    • 1997
  • The Ag-Pd-Cu alloys containing a small amount of Au is commonly used for dental purposes, because this alloy is cheaper than Au-base alloys for clinical use. However, the most important characteristic of this alloy is age-hardenability, which is not exhibited by other Ag-base dental alloys. The specimens used were Ag-20Pd-20Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electic furace and centrifugal casting machine in Ar atmoshpere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at $350{\sim}550^{\circ}C$ Age-hardening characteristics of the small Au-containing Ag-pPd-Cu dental alloys were investigated by means of hardness testing, X-ray diffraction and electron microscope observations, electrical resistance, differential scanning calorimetric, emergy dispersed spectra and electron probe microanalysis. Principal results are as follows : Hardening occured in two stages, I. e., stage I in low temperature and stage II in high temperature regions, during continuous aging. The case of hardening in stage I was due to the formation of the Llo type face centered tetragonal PdCu-ordered phase in the grain interior and hardening in stage I was affedted by the Cu concentration. In stage II, decomposition of the $\alpha$ solid solution to a PdCu ordered phase(L1o type) and an Agrich ${\alpha}2$ phase occurred and a discontiunous precipitation occurred at the grain boundary. Form the electron microscope study, it was concluded that the cause of age-hardening in this alloy is the precipitation of the PdCu ordered phase, which has AuCu I type face-centered tetragonal structure. Precipitation procedure was ${\alpha}\to{\alpha}+{\alpha}2+PdCu\to{\alpha}1+{\alpha}2+PdCu$ at Pd/Cu = 1 Ag-Pd-Cu alloy is more effective dental alloy as ageing treatment and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

Solderability and BGA Joint Reliability of Sn-Ag-Cu-In-(Mn, Pd) Pb-free Solders (Sn-Ag-Cu-In-(Mn, Pd) 무연솔더의 솔더링성과 BGA 접합부 신뢰성)

  • Jang, Jae-Won;Yu, A-Mi;Lee, Jong-Hyun;Lee, Chang-Woo;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.53-57
    • /
    • 2013
  • Although the lowering of Ag content in Sn-3.0Ag-0.5Cu is known to improve the mechanical shock reliability of the solder joint, it is also known to be detrimental to the solderbility. In this study, the quaternary alloying effect of In and the minor alloying effects of Mn and Pd on the solderability, thermal cycling and mechanical shock reliabilities of the low Ag content Sn-1.2Ag-0.7Cu solder were investigated using board-level BGA packages. The solderability of Sn-1.2Ag-0.7Cu-0.4In was proved to be comparable to that of Sn-3.0Ag-0.5Cu but its thermal cycling reliability was inferior to that of Sn-3.0Ag-0.5Cu. While the 0.03 wt% Pd addition to the Sn-1.2Ag-0.7Cu-0.4In decreased the solderability and reliabilities of solder joint, the 0.1 wt% Mn addition was proved to be beneficial especially for the mechanical shock reliability compared to those of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu compositions. It was considered to be due that the Mn addition decreased the Young's modulus of low Ag content Pb-free solders.