• Title/Summary/Keyword: Ag powder addition

Search Result 38, Processing Time 0.022 seconds

Evaluation of Mechanical Properties and Resistance to Thermal Shock of YBCO-Ag Superconductors (YBCO-Ag 초전도체의 기계적 성질 및 열충격 내성에 대한 평가)

  • 주진호
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.139-144
    • /
    • 1998
  • We have evaluated the role of Ag additions on the strength, fracture toughness, elastic modulus and resistance to thermal shock of $YBa_2Cu_3O_{7-x}$(YBCO) superconductor. Addition of 10 vol.% Ag improved strength and fracture toughness, whereas, decreased elastic modulus of YBCO. In addition, YBCO-Ag composites improved resistance to thermal shock probably due to enhanced strength, fracture toughness and thermal conductivity as a result of Ag addition. It is to be noted that YBCO-Ag made by mixing with $AgNO_3$ solution showed slightly higher strength, fracture toughness and resistance to thermal shock, compared to that made by mixing with metallic Ag powder. These improvements are believed to be due to the microstructure of more finely and uniformly distributed Ag particles.

  • PDF

Synthesis of Flake Ag Powder by Polyol Process (폴리올법에 의한 편상의 은 분말 합성)

  • Kim Dong-Jin;Liang Huanzhen;Ahn Jong-Gwan;Lee Jae-Ryeong;Chung Hun-Saeng
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.477-485
    • /
    • 2004
  • Monodispersed flaky silver powder was obtained by controlling the ratios of $H_{2}O_{2}/NH_{3}$ and Agin in a mixed solution of ethylene glycol and ammonia with an addition of PVP. The effects of $NH_{3}/Ag,\; H_{2}O_{2}/Ag\;and\;H_{2}PtCl_{6}/Ag$ on its morphology and size were investigated. In $H_{2}O_{2}-NH_{3}-AgNO_{3}\;system,\;NH_{3}/Ag$ molar ratio was found to be an important reaction factor for the nucleation and crystal growth of Ag powder. The synthesis of flaky powder was optimized at over 6 of $NH_{3}/Ag \;and\;5\;of\;H_{2}O_{2}/Ag\;under\;1.0{\times}10^{-3}\;of\;Pt/Ag.\;Moreover,\;as\;the\; NH_{3}/Ag$ molar ratio increased, the size of precipitates was increased regardless of the amount of Pt. In the absence of $H_{2}PtCI$, the morphology and size of reduced Ag powder were found to be irregular in shape $2-4{\mu}m$ in diameter. However, homogenized fine Ag powder was obtained due to heterogeneous nucleation when $H_{2}PtCI$ used as a cat-alyst, and flaky one was synthesized with the addition of Pt over $1.0{\times}10^{-3}$ of Pt/Ag.

Properties of Blocking Layer with Ag Nano Powder in a Dye Sensitized Solar Cell

  • Noh, Yunyoung;Kim, Kwangbae;Choi, Minkyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.105-109
    • /
    • 2016
  • We prepared a working electrode (WE) with a blocking layer (BL) containing 0 ~ 0.5 wt% Ag nano powders to improve the energy conversion efficiency (ECE) of dye sensitized solar cell (DSSC). FESEM and micro-Raman were used to characterize the microstructure and phase. UV-VIS-NIR spectroscopy was employed to determine the adsorption of the WE with Ag nano powders. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with Ag nano powders. From the results of the microstructural analysis, we confirmed that Ag nano powders with particle size of less than 150 nm were dispersed uniformly on the BL. Based on the phase and adsorption analysis, we identified the existence of Ag and found that the adsorption increased when the amount of Ag increased. The photovoltaic results show that the ECE became 4.80% with 0.3 wt%-Ag addition compared to 4.31% without Ag addition. This improvement was due to the increase of the localized surface plasmon resonance (LSPR) of the BL resulting from the addition of Ag. Our results imply that we might be able to improve the efficiency of a DSSC by proper addition of Ag nano powder to the BL.

Influence of Ag Addition on Superconducting Property of Carbon-black Doped $MgB_2$ Superconductor (카본블랙이 도핑 된 $MgB_2$ 초전도체의 Ag 첨가의 영향)

  • Kim, H.J.;Kim, H.J.;Kim, C.J.;Park, H.W.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • In this work we synthesized both MgB2 and Carbon doped MgB2 superconductor with Ag addition via high energy milling and substituent heat treatment. Heat treatments were performed at $900\;^{\circ}C$ for 30 min in flowing Ar gas. We varied amount of Ag powder. In a range of Ag powder was 0~5wt%. The effect of Ag was correlated with superconducting properties. The results show a slight decrease in critical temperature ($T_c$) and a reduction of critical current density ($J_c$) at high fields for the Ag-doped samples as compared to the un-doped samples. Reduction of $J_c$ may be due to the formation of MgAg compound.

A Study on the Effects of Ag Addition on the Mechanical Properties and Microstructure in Atomized Al-Zn-Mg Alloys (분무 Al-Zn-Mg 합금의 기계적 성질 및 미세조직에 미치는 Ag 첨가의 영향)

  • Shin, Hee-Sang;Jeong, Tae-Ho;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.19 no.6
    • /
    • pp.456-465
    • /
    • 1999
  • The overall objective of this study is to investigate the effect of Ag addition on the mechanical properties and microstructure of rapid solidified 7000 Al series alloys. Al-Zn-Mg-Cu alloys with small amounts of Ag was fabricated into the powder by gas atomization. The powder was extruded after the cold compaction and degassing and then followed by T6 heat treatment. Microstructure observation, phase analysis, room and high temperature tensile test and hardness test were pursued. The tensile strength and hardness of Ag-added alloy after heat treatment was increased with increasing Ag contents. However, the elongation of extruded alloys was not increased as much as to be expected. The reason of this result seems to be related to $the{\Omega}$ phase, which contribute to the high temperature strength stability of Al-Cu-Zn alloys through the formation of eutectoid with Ag addition.

  • PDF

Preparation of YBa2Cu3O6+x Superconducting Wires Prepared by Pyrophoric Synthetic Technique (발화합성법에 의한 YBa2Cu3O6+x 초전도 선재의 제조)

  • Yang, Suk-Woo;Lee, Young-Min;Kim, Young-Soon;Park, Jeong-Shik;Kim, Chan-Joong;Hong, Gye-Won;Shin, Hyung-Shik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1011-1017
    • /
    • 1998
  • $YBa_2Cu_3O_{6+x}(Y123)-Ag$ high-Tc superconducting wires were fabricated by plastic extrusion technique using pyrophoric synthetic and mechanical mixing powder with and without Ag addition(20 wt.%). This method involves powder preparation, plastic paste making, die extrusion, binder burn-out and the sintering process. In order to fabricate a good-quality superconducting body, it is required to use homogeneous and fine-size power as a starting materials. $Y_2O_3-BaCO_3-CuO$ precursor powders with/without Ag addition were prepared both by pyrophoric synthetic(PS) and mechanical mixing(MM) method of raw powders. The formation kinetics of the powder mixtures into Y123 phase was investigated at various temperatures and times in air atmosphere. The powder prepared by PS method was more easily converted into a Y123 phase than the MM powder. The fine size and good chemical homogeneity of the powder prepared by PS method is attributable to the fast formation into a Y123 phase. The critical current density($J_c$) of the Y123-Ag superconducting wires made by plastic extrusion method were in the range of $150A/cm^2{\sim}230A/cm^2$. depending on the charateristics of starting material powders. $J_c$ of the wire prepared by pyrophoric synthetic powder with 20 wt.% Ag addition was $230A/cm^2$.

  • PDF

Preparation of Cu-Ag Powder having Core-Shell Structure by Electroless Plating Method (무전해 도금법을 이용한 코어 셸 구조의 Cu-Ag분말 제조)

  • Kim, Jong-Wan;Lee, Huk-Hee;Won, Chang-Whan
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • Cu-Ag powder having Core-Shell structure was prepared from by electroless plating method using agents such as $AgNO_3$, $NH_{4}OH$, Hydroquinone. Ag coated copper powders were analyzed using scanning electron microscopy(SEM) and energy dispersive X-ray spectrometer(EDX). The silver coating layer of copper powder was affected from various reaction conditions such as molar ratio of $NH_{4}OH$, $AgNO_3$, and pulp density. Free silver was generated below 0.1M or 0.3M and above of $NH_{4}OH$ mole ratio. Silver coating layer thickened as addition of $AgNO_3$. When the pulp density reached 12% with 0.2M $NH_{4}OH$, and 0.15M $AgNO_3$ at $4^{\circ}C$, silver was homogeneously distributed around the copper particles and free silver particles were not generated.

Sintering Behavior and Mechanical Property of Cu-Sn Alloy with Ag Addition Produced by Pulsed Electric Current Sintering

  • Se Hwan Lee;Byungmin Ahn
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1475-1479
    • /
    • 2022
  • This work mainly focuses on the sintering behavior of the Cu-Sn alloy with the addition of Ag up to 4 wt% after pulsed electric current sintering (PECS) process for ultra-fast sintering. The microstructural evolution was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and density measurements. The mechanical properties were evaluated via measurements of transverse rupture strength (TRS) and Rockwell hardness. The mechanism during the sintering process has been discussed thoroughly, and the effect on porosity with the addition of the Ag is also correlated. The results showed that the growth of porosity progressed with the amount of Ag up to 2 wt%, and further addition of Ag leads reduction in porosity. The effect on mechanical properties were improved slowly as the amount of Ag increased.

Microstructure and Mechanical Properties of Mg-Li Powder by Hot Rolling Process

  • Choi, Jeong-Won;Kim, Yong-Ho;Kim, Jung-Han;Yoo, Hyo-Sang;Woo, Kee-Do;Kim, Ki-Beom;Son, Hyeon-Taek
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.32-36
    • /
    • 2015
  • Hot rolling of Mg-6Zn-0.6Zr-0.4Ag-0.2Ca-(0, 8 wt%)Li powder was conducted at the temperature of $300^{\circ}C$ by putting the powder into the Cu pipe. The microstructure and mechanical properties of the samples were observed. Mg-6Zn-0.6Zr-0.4Ag-0.2Ca without Li element was consisted of ${\alpha}$ phase and precipitates. The microstructure of the 8 wt%Li containing alloy consisted of two phases (${\alpha}$-Mg phase and ${\beta}$-Li phase). In addition, $Mg_2Zn_3Li$ was formed in 8%Li added Mg-6Zn-0.6Zr-0.4Ag-0.2Ca alloy. By addition of the Li element, the non-basal planes were expanded to the rolling direction, which was different from the based Mg alloy without Li. The tensile strength was gradually decreased from 357.1 MPa to 264 MPa with increasing Li addition from 0% to 8%Li. However, the elongation of the alloys was remarkably increased from 10 % to 21% by addition of the Li element to 8%. It is clearly considered that the non-basal texture and ${\beta}$ phase contribute to the increase of elongation and formability.

Synthesis and Characterization of (AgSbTe2)15(GeTe)85 Thermoelectric Powder by Gas Atomization Process (가스분무공정을 이용한 (AgSbTe2)15(GeTe)85 열전분말의 제조 및 특성평가)

  • Kim, Hyo-Seob;Lee, Jin-Kyu;Koo, Jar-Myung;Chun, Byong-Sun;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.449-455
    • /
    • 2011
  • In this study, p-type $(AgSbTe_2)_{15}(GeTe)_{85}$: TAGS-85 compound powders were prepared by gas atomization process, and then their microstructures and mechanical properties were investigated. The fabricated powders were of spherical shape, had clean surface, and illustrated fine microstructure and homogeneous $AgSbTe_2$ + GeTe solid solution. Powder X-ray diffraction results revealed that the crystal structure of the TAGS-85 sample was single rhombohedral GeTe phase, which with a space group $R_{3m}$. The grain size of the powder particles increased while the micro Vickers hardness decreased with increasing annealing temperature within the range of 573 K and 723 K due to grain growth and loss of Te. In addition, the crystal structure of the powder went through a phase transformation from rhombohedral ($R_{3m}$) at low-temperature to cubic ($F_{m-3m}$) at high-temperature with increasing annealing temperature. The micro Vickers hardness of the as-atomized powder was around 165 Hv, while it decreased gradually to 130 Hv after annealing at 673K, which is still higher than most other fabrication processes.