• Title/Summary/Keyword: Ag electrode

Search Result 652, Processing Time 0.032 seconds

The Effect of Additives on the Properties of Zn Electrode in Zn/AgO Secondary Battery (Zn/AgO Secondary Battery용 아연 양극의 성능에 미치는 첨가제의 영향)

  • Park, Kyung-Wha;Kim, Chang-Hwan;Moon, Kyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.196-202
    • /
    • 2003
  • We investigated the effect of both 4 types additives and $0.5wt\%\;Pb_3O_4$ which have been reported to show an improvement on the performance of Zinc anode. And Experimental methods such as corrosion potential measurement, potentiodynamic polorization test and charging-discharging cycle life test were carried out in $40 wt\%$ KOH with $Pb_3O_4(0.5, \;10\;&\;2.0wt\%)$ and 4 types additives $(0.4wt\%\;of\;Ca(OH)_2$, 0.025M of Citrate, Tartrate and Gluconate). Corrosion potential was shifted to high direction and also changed to high and low direction repeatedly with increasing of $Pb_3O_4$ quantity. However by adding $0.5wt\%\;Pb_3O_4$, corrosion potential shifted to low direction and showed stable condition. Furthermore it was well known that corrosion resistance was predominantly increased compared to no addition and improved charging-discharging property with adding additives. By SEM analysis, it was concluded that the morphology of surface in case of only $0.5wt\%\;Pb_3O_4$ addition was nearly the same as that of Tartrate additive and in the other additives such as $Ca(OH)_2$, Citrate, Tartrate and Gluconate, their morphologies showed dendrite growth. Eventually it was thought that the additive of Tartrate indicated comparatively good corrosion resistance effect as well as charging-discharging property improvement among those four types additives.

Voltammetric Determination of Cu(II) Ion at a Chemically Modified Carbon-Paste Electrode Containing 1-(2-pyridylazo)-2-naphthol (1-(2-Pyridylazo)-2-naphthol 수식전극을 사용한 Cu(II) 이온의 전압전류법적 정량)

  • Jun-Ung Bae;Hee Sook Jun;Hye-Young Jang
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.723-729
    • /
    • 1993
  • Cu(II) ion-responsive chemically modifed electrodes (CMEs) were constructed by incorporating 1-(2-pyridylazo)-2-naphthol (PAN) into a conventional carbon-paste mixture of graphite powder and Nujol oil. Cu(II) ion was chemically deposited on the surface of the PAN-chemically modified electrode in the absence of an applied potential by immersion of the electrode in a buffer solution (pH 3.2) containing Cu(II) ion, and then reduced at a constant potential in 0.1 M KNO$_3$. And a well-defined voltammetric peak could be obtained by scanning the potential to the positive direction. The electrode surface could be regenerated with exposure to acid solution and reused for the determination of Cu(II) ion. In 5 deposition / measurement / regeneration cycles, the response could be reproduced with 6.1${\%}$ relative standard deviation. In case of using the differential pulse voltammetry, the calibration curve for Cu(II) was linear over the range of 2.0 ${times}$ 10$^{-7}$ ∼ 1.0 ${times}$ 10$^{-6}$ M. And the detection limit was 6.0 ${times}$ 10$^{-8}$ M. Studies of the effect of diverse ions showed that Co, Ni, Zn, Pb, Mg and Ag ions added 10 times more than Cu(II) ion did not influence on the determination of Cu(II) ion, except EDTA and oxalate ions.

  • PDF

AN ELECTROCHEMICAL STUDY ON THE CORROSION RESISTANCE OF THE VARIOUS IMPLANT METALS (수종 임플랜트 금속의 내식성에 관한 전기화학적 연구)

  • Jeon Jin-Young;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.423-446
    • /
    • 1993
  • Titanium and its alloys are finding increasing use in medical devices and dental implants. The strong selling point of titanium is its resistance to the highly corrosive body fluids in which an implant must survive. This corrosion resistance is due to a tenacious passive oxide or film which exists on the metal's surface and renders it passive. Potentiodynamic polarization measurement is one of the most commonly used electro-chemical methods that have been applied to measure corrosion rates. And the potentiodynamic polarization test supplies detailed information such as open circuit, rupture, and passivation potential. Furthermore, it indicates the passive range and sensitivity to pitting corrosion. This study was designed to compare the corrosion resistance of the commonly used dental implant materials such as CP Ti, Ti-6A1-4V, Co-Cr-Mo alloy, and 316L stainless steel. And the effects of galvanic couples between titanium and the dental alloys were assessed for their useful-ness-as. materials for superstructure. The working electrode is the specimen , the reference electrode is a saturated calomel electrode (SCE), and the counter electrode is made of carbon. In $N_2-saturated$ 0.9% NaCl solutions, the potential scanning was performed starting from -800mV (SCE) and the scan rate was 1 mV/sec. At least three different polarization measurements were carried out for each material on separate specimen. The galvanic corrosion measurements were conducted in the zero-shunt ammeter with an implant supraconstruction surface ratio of 1:1. The contact current density was recorded over a 24-hour period. The results were as follows : 1. In potential-time curve, all specimens became increasingly more noble after immersion in the test solution and reached between -70mV and 50mV (SCE) respectively after 12 hours. 2. The Ti and Ti alloy in the saline solution were most resistant to corrosion. They showed the typical passive behavior which was exhibited over the entire experimental range. Therefore no breakdown potentials were observed. 3. Comparing the rupture potentials, Ti and Ti alloy had the high(:st value (because their break-down potentials were not observed in this study potential range ) followed by Co-Cr-Mo alloy and stainless steel (316L). So , the corrosion resistance of titanium was cecellent, Co-Cr-Mo alloy slightly inferior and stainless steel (316L) much less. 4. The contact current density sinks faster than any other galvanic couple in the case of Ti/gold alloy. 5. Ag-Pd alloy coupled with Ti yielded high current density in the early stage. Furthermore, Ti became anodic. 6. Ti/Ni-Cr alloy showed a relatively high galvanic current and a tendency to increase.

  • PDF

Synthesis of Several Osmium Redox Complexes and Their Electrochemical Characteristics in Biosensor (오스뮴 착물들의 합성 및 전기화학적인 특성에 관한 연구)

  • Kim, Hyug-Han;Choi, Young-Bong;Tae, Gun-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2008
  • Redox complexes to transport electrodes from bioreactors to electrodes are very important part in electrochemical biosensor industry. A novel osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium metal. Newly synthesized osmium complexes are described as ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dmo-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dcl-bpy)}_2{(ap-im)Cl]}^{+/2+}$. We have been studied the electrochemical characteristics of these osmium complex with electrochemical techniques such as cyclic voltammetry and chronoamperommetry. Osmium redox complexes were immobilized on the screen printed carbon electrode(SPE) with deposited gold nanoparticles. The electrical signal converts the osmium redox films into an electrocatalyst for glucose oxidation. Each catalytic currents were related with the potentials of osmium complexes.

Determination of Trace Level Mercury in Bio-Materials by Square Wave Anodic Stripping Voltammetry (네모파 산화전극벗김 전압전류법을 이용한 생체시료 중의 미량 수은 분석)

  • Kim Il Kwang;Park Sung Woo;Han Jong Hyun;Kim Youn Geun;Chun Hyun Ja;Park Kyung Ok
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.477-482
    • /
    • 1993
  • The determination of trace level mercury in bio-materials has been investigated by the square wave anodic stripping voltammetry (ASV)-technique at glassy carbon electrode. Prior to analysis, the bio-materials were digested with HNO3/H2SO4 mixture and KMnO4 was added to complete the oxidation. The detection limit of the mercury varied greatly with deposition time, deposition potential, pH and stirring rate. When deposition is carried out for 240 sec with 400 rpm stirring at -1.0 volts vs. Ag/AgCl, the detection limit was below $0.5\;ppb\;(2.5{\times}10^{-9} M)$. The method is recommended for trace level mercury analysis of biomaterials because this procedure is time saving and has higher sensitivity.

  • PDF

Angular dependence of emision pattern in top-emission organic light-emitting diodes (전면 유기 발광 다이오드의 각도에 따른 발광 패턴 연구)

  • Joo, Hyun-Woo;Mok, Rang-Gyun;Kim, Tae-Wan;Jang, Kyung-Wook;Song, Min-Jong;Lee, Ho-Shik;An, Hui-Chul;Na, Su-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.277-278
    • /
    • 2009
  • We have studied an angular dependence of emission pattern of top-emssion organic light-emitting diodes (TEOLED). Device structure is Al(100nm)/TPD(40nm)/$Alq_3$(60nm)/LiF(0.5nm)/Al(2nm)/Ag(30nm). N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) and tris-(8-hydroxyquinoline) aluminium ($Alq_3$)were used as a hole transport layer and emission layer, respectively. Organic layers and cathode were thermally evaporated at $2\times10^{-5}$torr. The evaporation rate of the organic material was maintained to be $1.5\sim2.0{\AA}/s$, and that of metal layer to be $0.5\sim5{\AA}/s$. A transmittance of a cathode electrode(Al/Ag) in visible region is about 25~30%. In order to measure view-angle dependent intensity, electroluminenscence spectra of the device at each angle were integrated. Angle dependent emission spectra of the device do not show blue shift. Emission intensity of the device that the going straight characteristic is stronger the bottom-emission organic light-emitting diodes is shown.

  • PDF

Electrocatalytic Reduction of CO2 by Copper (II) Cyclam Derivatives

  • Kang, Sung-Jin;Dale, Ajit;Sarkar, Swarbhanu;Yoo, Jeongsoo;Lee, Hochun
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.106-110
    • /
    • 2015
  • This study investigates Cu(II) complexes of cyclam, propylene cross-bridged cyclam (PCB-cyclam), and propylene cross-bridged cyclam diacetate (PCB-TE2A) as homogeneous electrocatalysts for CO2 reduction in comparison with Ni(II)-cyclam. It is found that Cu(II)-cyclam can catalyze CO2 reduction at the potential close to its thermodynamic value (0.75 V vs. Ag/AgCl) in tris-HCl buffer (pH 8.45) on a glassy carbon electrode. Cu(II)-cyclam, however, suffers from severe demetalation due to the insufficient stability of Cu(I)-cyclam. Cu(II)-PCB-cyclam and Cu(II)-PCB-TE2A are revealed to exhibit much less demetalation behavior, but poor CO2 reduction activities as well. The inferior electrocatalytic ability of Cu(II)-PCB-cyclam is ascribed to its redox potential that is too high for CO2 reduction, and that of Cu(II)-PCB-TE2A to the steric hindrance preventing facile contact with CO2 molecules. This study suggests that in addition to the redox potential and chemical stability, the stereochemical aspect has to be considered in designing efficient electrocatalysts for CO2 reduction.

Microbial Enrichment and Community Analysis for Bioelectrochemical Acetate Production from Carbon Dioxide (이산화탄소로부터 생물전기화학적 아세트산 생산을 위한 미생물 농화배양 및 군집 분석)

  • Kim, Junhyung;Kim, Young-Eun;Park, Myeonghwa;Song, Young Eun;Seol, Eunhee;Kim, Jung Rae;Oh, You-Kwan
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • Microbial electrosynthesis has recently been considered a potentially sustainable biotechnology for converting carbon dioxide (CO2) into valuable biochemicals. In this study, bioelectrochemical acetate production from CO2 was studied in an H-type two-chambered reactor system with an anaerobic microbial consortium. Metal-rich mud flat was used as the inoculum and incubated electrochemically for 90 days under a cathode potential of -1.1 V (vs. Ag/AgCl). Four consecutive batch cultivations resulted in a high acetate concentration and productivity of 93 mmol/L and 7.35 mmol/L/day, respectively. The maximal coulombic efficiency (rate of recovered acetate from supplied electrons) was estimated to be 64%. Cyclic voltammetry showed a characteristic reduction peak at -0.2~-0.4 V, implying reductive acetate generation on the cathode electrode. Furthermore, several electroactive acetate-producing microorganisms were identified based on denaturing- gradient-gel-electrophoresis (DGGE) and 16S rRNA sequence analyses. These results suggest that the mud flat can be used effectively as a microbial source for bioelectrochemical CO2 conversion.

A Study on the Electrochemical Deposition and p-Type Doping of ZnTe Films as a Back Contact Material for CdTe Photovoltaic Solar Cells (CdTe계 태양전지에 응용되는 ZnTe 박막의 전기화학적 제조 및 Cu 도핑 연구)

  • Kim, Dong-Hwan;Jeon, Yong-Seok;Kim, Gang-Jin
    • Korean Journal of Materials Research
    • /
    • v.7 no.10
    • /
    • pp.856-862
    • /
    • 1997
  • 박막형 CdTe/CdS 태양전지의 배면전극(back contacts)물질로서 Cu도핑된 ZnTe 박막(ZnTe:Cu)을 전착법(electroplating)으로 제조하는 연구를 수행하였다. Sulfate계의 전해질 수용액에서 CdTe 기판과 투명전극으로 코팅된 유리(In$_{2}$O$_{3}$: Sn, ITO)기판 위에 ZnTe 박막을 코팅하는 방법으로써 potentiostat와 기판(cathode), Pt counter electrode, Ag/AgCI 표준전극으로 구성된 장치를 사용하여 pH=2.5-4, T=70-8$0^{\circ}C$, 0.02M $Zn^{2+}$ 1x$10^{-4}$M TeO$_{2}$, 0.2M $K_{2}$SO$_{4}$조건에서 -0.800 Vs~-0.975 V 범위의 전압(V$_{a}$ )에 걸쳐 실험하였다. ITO박막을 기판으로 사용하여 cyclic voltammogram을 작성한 결과 약 -0.50 V 에서 Te환원 peak이 나타났다. Auger electron spectroscopy (AES)로 조성분석한 결과 표면에서 Zn signal이 강하게 나왔고 시편의 두께에 따라 Zn의 signal감소하는 반면 Cd signal은 증가하는 것이 확인되었다. SEM 사진으로부터 ZnTe의 표면이 작은 입자 (0.2$\mu\textrm{m}$ 이하)로 구성되어 있으며 낮은 V$_{a}$ 에서는 입자가 작아지면서 조직이 치밀해짐이 관찰되었다. Optical transmission방법에 의하여 ITO기판위에 입혀진 박막의 밴드갭은 2.5 eV으로 측정되었다. 수용액중의 Cu$_{2+}$와 triethanolamine(TEA)은 산성용액에서 착물형성이 이루어지지 않았으며 1,10-phenanthroline과는 pH=2에서도 착물이 형성되었다.

  • PDF

Resistive Humidity Sensor from Copolymers Containing Quaternary Ammonium Salt (II): Four Component Copolymers (4차 암모늄염을 포함하는 공중합체를 이용한 저항형 습도센서 (II) : 4원 공중합체)

  • Lee, Dong-Geun;Lim, Tae-Ho;Jeon, Young-Min;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.302-307
    • /
    • 2007
  • The resistive-type humidity sensors were prepared from the copolymers of [2-[(methacryloyloxy)ethyl]dimethyl]propylamonium bromide (MEPAB), [2-[(methacryloyloxy)ethyl]-2-hydroxyethyl]dimethylammonium bromide (MEHDAB), 2- [(methacryloyloxy)ethyl]trimethylammonium chloride (METAC), and n-butyl methylacrylate (MBA). Four component copolymers MEPAB/BMA/MEHDAB/METAC=4/4/1/1, 3/5/1/1, 2/6/1/1, 1/7/1/1 crosslinked with blocked-isocyanate on Ag/Pd electrode/alumina substrate showed a good durability at high humidities. The various electrical properties such as frequency dependency, temperature dependency, hysteresis, response time and water durability were examined. In the case of copolymer composed of MEPAB/BMA/MEHDAB/METAC=2/6/1/1, the resistance varied from $1.4\;M{\Omega}$ to $2.9\;k{\Omega}$ at $25^{\circ}C$ in the range of $30{\sim}90\;%RH$ and this copolymers showed a good linearity and low hysteresis.