Browse > Article
http://dx.doi.org/10.5229/JECST.2015.6.3.106

Electrocatalytic Reduction of CO2 by Copper (II) Cyclam Derivatives  

Kang, Sung-Jin (Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Dale, Ajit (Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpoo National University)
Sarkar, Swarbhanu (Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpoo National University)
Yoo, Jeongsoo (Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpoo National University)
Lee, Hochun (Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Publication Information
Journal of Electrochemical Science and Technology / v.6, no.3, 2015 , pp. 106-110 More about this Journal
Abstract
This study investigates Cu(II) complexes of cyclam, propylene cross-bridged cyclam (PCB-cyclam), and propylene cross-bridged cyclam diacetate (PCB-TE2A) as homogeneous electrocatalysts for CO2 reduction in comparison with Ni(II)-cyclam. It is found that Cu(II)-cyclam can catalyze CO2 reduction at the potential close to its thermodynamic value (0.75 V vs. Ag/AgCl) in tris-HCl buffer (pH 8.45) on a glassy carbon electrode. Cu(II)-cyclam, however, suffers from severe demetalation due to the insufficient stability of Cu(I)-cyclam. Cu(II)-PCB-cyclam and Cu(II)-PCB-TE2A are revealed to exhibit much less demetalation behavior, but poor CO2 reduction activities as well. The inferior electrocatalytic ability of Cu(II)-PCB-cyclam is ascribed to its redox potential that is too high for CO2 reduction, and that of Cu(II)-PCB-TE2A to the steric hindrance preventing facile contact with CO2 molecules. This study suggests that in addition to the redox potential and chemical stability, the stereochemical aspect has to be considered in designing efficient electrocatalysts for CO2 reduction.
Keywords
Electrocatalyst; Carbon dioxide reduction; Cyclam; Copper; Cyclic voltammetry;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Zanello, R. Seeber, A. Cinquantini, G. Mazzocchin and L. Fabbrizzi, J. Chem. Soc., Dalton Trans., 893 (1982).
2 L. Fabbrizzi, A. Poggi and P. Zanello, J. Chem. Soc., Dalton Trans., 2193 (1983).
3 P.V. Bernhardt, J.M. Harrodield, D.C.R. Hockless, and A.M. Sargeson, Inog. Chem., 33, 5659 (1994).   DOI
4 G. Nirmala, A.K. Rahiman, S. Sreedaran, R. Jegadeesh, N. Raaman and V. Narayanan, Spectrochimica Acta Part A, 77, 92 (2010).   DOI
5 K. Barefield and F. Wagner, Inorg. Chem., 12, 2435 (1973).   DOI
6 D.N. Pandya, A.V. Dale, J.Y. Kim, H. Lee, Y.S. Ha, G. I. An, J. Yoo, Bioconjugate Chem., 23, 330 (2012).   DOI
7 C. Costentin, M. Robert and J.-M. Saveant, Chem. Soc. Rev., 42, 2423 (2013).   DOI
8 R Lim, M Xie, M. Sk, J.-M. Lee, A. Fisher,X. Wang and K. Lim, Catalysis Today, 233, 169 (2014).   DOI
9 J. Song and W. Shin, J. Korean Electrochem. Soc., 12, 131 (2009)   DOI
10 M. Beley, J.-P. Collin, R. Ruppert and J.-P. Sauvage, J. Chem. Soc., Chem. Commun, 1315 (1984).
11 M. Beley, J.-P. Collin, R. Ruppert and J.-P. Sauvage, J. Am. Chem. Soc., 108, 7461 (1986).   DOI
12 M. Fujihira, Y. Hirata and K. Suga, J. Electroanal. Chem., 292, 199 (1990).   DOI
13 J.D. Froehlich and C.P. Kubiak, Inog. Chem., 51, 3932(2012).   DOI
14 J. Song, Y. Kim, M. Lim, H. Lee, J. Lee and W. Shin, ChemSusChem, 4, 587 (2011).   DOI
15 J. Schneider, H. Jia, K. Kobiro, D.E. Cabelli, J.T. Muckerman and E. Fujita, Energy Environ. Sci., 5, 9502 (2012).   DOI
16 J. Song, E.L. Klein, F. Neese and S. Ye, Inog. Chem., 53, 7500 (2014).   DOI
17 B. Fisher and R. Eisenberg, J. Am. Chem. Soc., 102, 7363 (1980).   DOI