• Title/Summary/Keyword: Ag 전극

Search Result 527, Processing Time 0.029 seconds

Electrochemical Properties of Individual Carbon Nanotube Fabricated by Reactive Ion Etching (반응성 이온 식각법에 의해 제작된 탄소나노튜브 전극의 전기화학적 특성)

  • Hwang, Sook-Hyun;Choi, Hyon-Kwang;Kim, Sang-Hyo;Han, Young-Moon;Jeon, Min-Hyon
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.89-94
    • /
    • 2011
  • In this work, fabrication and electrochemical analysis of an individual multi-walled carbon nanotube (MWNT) electrode are carried out to confirm the applicability of electrochemical sensing. The reactive ion etching (RIE) process is performed to obtain sensitive MWNT electrodes. In order to characterize the electrochemical properties, an individual MWNT is cut by RIE under oxygen atmosphere into two segments with a small gap: one segment is applied to the working electrode and the other is used as a counter electrode. Electrical contacts are provided by nanolithography to the two MWNT electrodes. Dopamine is specially selected as an analytical molecule for electrochemical detection using the MWNT electrode. Using a quasi-Ag/AgCl reference electrode, which was fabricated by us, the nanoelectrodes are subjected to cyclic voltammetry inside a $2{\mu}L$ droplet of dopamine solution. In the experiment, RIE power is found to be a more effective parameter to cut an individual MWNT and to generate "broken" open state, which shows good electrochemical performance, at the end of the MWNT segments. It is found that the pico-molar level concentration of analytical molecules can be determined by an MWNT electrode. We believe that the MWNT electrode fabricated and treated by RIE has the potential for use in high-sensitivity electrochemical measurement and that the proposed scheme can contribute to device miniaturization.

Electrochemical Determination of Glucose in Sea Water (해수 중 글루코오스 농도의 전기화학적 측정)

  • 김영한
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.73.2-77
    • /
    • 2000
  • A possibility of the implementation of a quartz crystal sensor to the detennination of chemical oxygen demand is examined by checking the electrochemical behavior of the sensor in a glucose solution. Since the surface of a quartz crystal has to be oxidized, a relatively active metal is coated on the surface of a usual 9 MHz AT-cut crystal. The electrochemical behavior is investigated by measuring the changes of current, resonant frequency and resonant resistance while a constant potential is applied. The crystal is installed in a specially designed container, and a QUartz crystal analyzer is utilized to measure the frequency and resistance simultaneously. The variations of the measurements are examined at different concentrations of glucose solution and the effect of the concentration is analyzed to find a proper relation between the concentration and the measurements. It is fOlmd that a linear relation between the concentration of less than 900 Dpm and the peak current when a constant potential of -180 m V vs. Ag/ AgCI reference is applied.

  • PDF

Effect of the Electrode Type on the Dielectric and Piezoelectric Properties of Piezoelectric PMN-PZT Single Crystals (압전 PMN-PZT 단결정의 유전 및 압전 특성에 미치는 전극 종류의 영향)

  • Lee, Jong-Yeb;Oh, Hyun-Taek;Choi, Kyoon;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.77-82
    • /
    • 2015
  • The effect of the electrode type on the dielectric and piezoelectric properties of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbZrO_3-PbTiO_3$ (PMN-PZT) single crystals was investigated in an effort to improve their properties for various piezoelectric applications. First, three different types of PMN-PZT single crystals [PMN-PZT-A (piezoelectrically soft type; dielectric constant ~ 10,000), PMN-PZT-B (piezoelectrically soft type; phase-transition temperature between the rhombohedral and tetragonal phases ($T_{RT}$) ~ $145^{\circ}C$), PMN-PZT-C (piezoelectrically hard type; high mechanical quality factor ($Q_m$) ~ 1,000)] were fabricated using the solid-state single crystal growth (SSCG) method. Then, four different types of electrodes [sputtered Au, sputtered Cr/Au, sputtered Ti/Au, and fired Ag] were formed on the single crystals, and their dielectric and piezoelectric properties were measured. The single crystals with a sputtered Ti/Au electrode showed the highest dielectric and piezoelectric constants but the lowest coercive electric field ($E_C$). The single crystals with a fired Ag electrode showed the lowest dielectric and piezoelectric constants but the highest coercive electric field ($E_C$). This dependence on the type of electrode was most significant in the piezoelectrically hard PMN-PZT-C single crystals. However, the effects of the electrode type on the phase transition temperatures ($T_C$, $T_{RT}$) and dielectric loss were negligible. These results clearly demonstrate that it is important to select an appropriate electrode so as to maximize the dielectric and piezoelectric properties of single crystals in each type of piezoelectric application.

Measurement of Bow in Silicon Solar Cell Using 3D Image Scanner (3D 스캔을 이용한 실리콘 태양전지의 휨 현상 측정 연구)

  • Yoon, Phil Young;Baek, Tae Hyeon;Song, Hee Eun;Chung, Haseung;Shin, Seungwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.823-828
    • /
    • 2013
  • To reduce the cost per watt of photovoltaic power, it is important to reduce the cell thickness of crystalline silicon solar cells. As the thickness of the silicon layer is reduced, two distinctive thermal expansion rates between the silicon and the aluminum layer induce bowing in a solar cell. With a thinner silicon layer, the bowing distance grows exponentially. Excessive bowing could damage the silicon wafer. In this study, we tried to measure an irregularly curved silicon solar cell more accurately using a 3D image scanner. For the detailed analysis of the three-dimensional bowing shape, a least square fit was applied to the point data from the scanned image. It has been found that the bowing distance and shape distortion increase with a decrease in the thickness of the silicon layer. An Ag strip on top of the silicon layer can reduce the bowing distance.

Reliability assessment of RPCB and FPCB Joints bonded using Thermo-compression (열 압착으로 접합된 RPCB와 FPCB 접합부의 신뢰성 평가)

  • Jang, Jin-Kyu;Lee, Jong-Gun;Lee, Jong-Bum;Ha, Sang-Su;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.81-81
    • /
    • 2009
  • 최근 휴대폰, 노트북 등과 같은 소형 멀티미디어 기기의 사용이 증가함에 따라 전자 패키징 산업은 경박단소화를 요구하고 있습니다. 더불어 전기적 신호의 손실을 줄이기 위해 전기, 전자산업체에서는 가볍고 굴곡성이 우수한 연성인쇄회로기판(Flexible Printed Circuit Board, FPCB)과 가격이 싸고 신뢰성이 입증된 경성인쇄회로기판(Rigid Printed Circuit Board, RPCB)의 전극간 접합에 많은 관심을 보이고 있습니다. 기존에 연성인쇄회로기판과 경성인쇄회로기판을 접합하는 방식으로는 connector를 이용한 체결법이 사용되고 있지만 완성품의 부피가 커지고 자동화 공정이 힘들며 I/O 개수가 제한적이어서 신호전달에 취약한 단점이 있습니다. 또한, 최근 FPCB를 RPCB에 접합하는데 interconnection으로 이방성 도전 필름(Anisotropic conductive film, ACF) 또는 비전도성 필름(Non-conductive film)이 널리 사용되고 있습니다. 하지만 필름의 가격이 비싸고, 낮은 전기 전도도를 보이며, 신뢰성 특성이 낮다는 단점을 가지고 있습니다. 본 실험에서는 기존의 connector 방식과 접착 필름을 이용한 방식을 대체하기 위하여 솔더를 interlayer로 이용하여 열과 압력으로 접합하는 방법에 대하여 연구하였습니다. 실험에 사용된 솔더의 조성은 Sn-3.0Ag-0.5Cu (in wt%)이고, RPCB와 FPCB의 표면처리는 ENIG로 하였습니다. 접합 온도와 접합 시간에 따라 최적의 접합 조건을 도출하고자 하였고, 접합된 시편을 가지고 신뢰성 테스트를 진행하였습니다. $85^{\circ}C$/85% 고온고습 시험과 고온 방치 시험을 통하여 접합부의 신뢰성을 테스트 하였고, 90도 Peel test로 기계적 접합 강도를 측정하였고, 파괴 단면을 Scanning Electron Microscopy (SEM), Energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS)로 분석하였습니다.

  • PDF

Novel Water-Soluble Polyfluorenes as an Interfacial layer leading to Cathodes-Independent High Performance of Organic Solar Cells

  • Oh, Seung-Hwan;Shim, Hee-Sang;Park, Dong-Won;Jeong, Yon-Kil;Lee, Jae-Kwang;Moon, Seung-Hyeon;Kim, Dong-Yu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.394-394
    • /
    • 2009
  • Water solubility of conjugated polymers may offer many applications. Potential applications of water-soluble conjugated polymers include the polymer light-emitting diode and new materials for nano and micro hollow-capsules, and bio- or chemo-sensors. We synthesized neutral polyfluorenes containing bromo-alkyl groups by the palladium catalyzed Suzuki coupling reaction. Bromo-alkyl side groups in neutral polyfluorenes were quaternized by tri-methyl amine solution. The electrochemical and optical properties of water-soluble conjugated polymers are discussed. This novel synthesized water-soluble conjugated polymers were used as a interfacial dipole layer between active layer and metal cathode in polymer solar cell for enhancement of open-circuit voltage (Voc), which is one of the most critical factors in determining device characteristics. We also investigated the device performance of polymer solar cell with different metal cathode such as Al, Ag, Au and Cu. In polymer solar cell, novel cationic water-soluble conjugated polymers were inserted between active layer and high-work function cathode (Al, Ag, Au and Cu).

  • PDF

A Study on the Apparatus for Measuring Oxygen-Permeability of Membranes with a Multi-Electrode Oxygen Sensor (다전극 산소 센서를 이용한 고분자 막의 산소 투과도 측정 장치 연구)

  • Jeong, Il-Son;Jung, Jae-Chil;Kim, Tai-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.229-234
    • /
    • 2012
  • The existing permeability measurements based on pressure differential between the polymer membrane that is permeable to measure the amount of oxygen used, but these methods must be kept in a vacuum, and the measurement of the membrane with low permeability in the membrane is too time consuming. In recent years by using electrochemical method polymer membrane currents caused by the amount of oxygen is a measure of how much is used. In this study, apparatus consisting of one anode and six cathodes for multi-oxygen permeability tester used the same number of membranes produced by electrochemical oxygen permeation characteristics. In this study, one silver/silver chloride anode electrochemical method with a hexagonal sensor to put various kinds of polymer membranes with the six oxygen permeability for simultaneous measurement in real-time systems. Six cathodes (Pt), and one of the coil-shaped anode (Ag/AgCl) to form a hexagonal one of the polarographic oxygen sensor in a single measurement system by six sensors. Each sensor for making hexagonal specificity of the sensor to compensate for the conditions obtained in a pure nitrogen gas and pure oxygen gas conditions. With this study, self-developed hexagonal sensor capable of measuring sensors and oxygen permeability tester, for a multi-six different oxygen permeability characteristics of the membrane measured at the same time.

Resistive Humidity Sensor from Copolymers Containing Quaternary Ammonium Salt (I): Three Component Copolymers (4차 암모늄염을 포함하는 공중합체를 이용한 저항형 습도센서(I) : 3원 공중합체)

  • Lee, Dong-Geun;Lim, Tae-Ho;Jeon, Young-Min;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.194-200
    • /
    • 2007
  • The resistive-type polymeric humidity sensors were prepared from the copolymers of [2- [(methacryloyloxy)ethyl] dimethyl] propylammonium bromide(MEPAB), [2- [(methacryloyloxy)ethyl]-2-hydroxyethyl]dimethylmonium bromide (MEHDAB), n-butyl methylacrylate(MBA), 2-hydroxyethyl methylacrylate(HEMA) and styrene. Four kinds of copolymers, ie, MEPAB/styrene/MEHDAB MEHDAB/BMA/HEMA, MEPAB/BMA/MEHDAB, and MEPAB/styrene/HEMA crosslinked with blocked-isocyanate on the Ag/Pd electrode/alumina substrate showed good durability at high humidities. The various electrical properties such as frequency dependency, temperature dependency, hysteresis, response time and water durability were examined. In the case of copolymer MEPAB/BMA/MEHDAB= 3/6/1, the resistance was varied from $2.9 M{\Omega}$ to $1.84k{\Omega}$ at $25^{\circ}C$ in the range of $30{\sim}90%RH$ and this copolymers showed a good linearity and low hysteresis.

Investigation on optimum cavitation-erosion protection potential of anodized 5083-H321 Al alloy in sea water (양극산화 처리된 5083-H321 알루미늄 합금의 해수 내 캐비테이션-침식 방지를 위한 최적 방식전위 규명)

  • Yang, Ye-Jin;Jang, Seok-Gi;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.143-143
    • /
    • 2016
  • 알루미늄 합금은 내구성과 내식성이 우수할 뿐만 아니라 다양한 표면개질을 통해 그 표면 특성을 더욱 향상시킬 수 있다. 특히 Al-Mg계 5083-H321 Al 합금의 경우 가공성 및 용접성이 우수하여 선체 재료로 널리 이용되는데, 이는 선체중량의 경량화가 가능하여 연료비 절감과 빠른 선속 등 다양한 이점을 지니기 때문이다. 그러나 선속의 고속화에 따라 선체에 가해지는 유체충격이 증가하고 정압 저하에 기인하여 캐비테이션-침식 손상이 증가할 뿐만 아니라 해수환경 특성 상염소이온의 존재로 부식이 가속화되는 등 침식 및 부식의 시너지효과로 손상은 크게 증가한다. 이에 대한 방지대책으로 다양한 표면개질 기법이 제안되고 있으나 강한 충격압이 동반된 캐비테이션 침식-부식 복합 손상 환경에서는 표면처리만으로는 불가능할 수 있다. 따라서 본 연구에서는 양극산화된 5083-H321을 대상으로 캐비테이션 환경 하에서 일정 전위를 인가하여 침식-부식 손상이 최소화되는 최적전위를 규명하고자 한다. 이를 위해 먼저 분극 실험을 통해 재료의 전기화학적 거동을 바탕으로 임의의 전위를 선정하고 해당 전위를 인가한 상태에서 캐비테이션 실험을 실시하였다. 이때 분극실험과 캐비테이션-전기화학 복합실험 모두 $25^{\circ}C$의 해수에서 실시하였으며, 전기화학적 분극실험은 유효면적이 $3.24cm^2$인 시편에 2 mV/s의 분극속도로 0 ~ -3 V 까지 인가하였고, Ag/AgCl 기준전극과 백금대극을 사용하였다. 캐비테이션-전기화학 복합 실험은 정전위를 인가한 상태에서 $30{\mu}m$의 진폭으로 20분간 실시하였으며, 혼팁과 시험편 사이의 거리는 1 mm로 일정하게 유지하였다. 실험 후 표면 손상의 정량적 분석을 위해 인가된 전위별 전류밀도를 비교하고, 무게감소량을 측정하였으며, 손상특성 분석을 위해 3D현미경과 주사전자현미경(SEM)을 통해 표면을 분석하였다.

  • PDF

Electrochemical Properties of Manganese Oxide Electrode for Supercapacitor (수퍼커패시터용 망간옥사이드 전극의 전기화학적 특성)

  • Kim, Han-Joo;Park, Soo-Young;Shin, Dal-Woo;Kim, Yong-Chul;Kim, Seong-Ho;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1518-1520
    • /
    • 2000
  • Amorphous $MnO_{2}{\cdot}nH_{2}O$ in 1M KOH aqueous electrolyte proves to be an excellent electrode for a faradic electrochemical capacitor cycled between -0.5 and +1.0 versus Ag/AgCl. The effect of thermal treatment on the crystalinity, particle structure, and corresponding electrochemical properties of the resulting xerogel remained amorphous as Mn(OH)2 up to 160$^{\circ}C$. With an increase in the temperature above 200$^{\circ}C$, both the surface area and pore volume decreased sharply, because the amorphous Mn(OH)2 decomposed to form MnO that was subsequently oxidized to form crystalline Mn3O4. In addition, the changes in the crystallinity, and particle structure all had significant but coupled effects on the electrochemical properties of the xerogels. A maximum capacitance of 160.6F/g was obtained for an electrode prepared with the MnOx Xerogel calcined at 150$^{\circ}C$, which was consistent with the maxima exhibited in both the surface area and pore volume. This capacitance was attributed solely to a surface redox mechanism.

  • PDF