• Title/Summary/Keyword: Ag/AgCl

Search Result 530, Processing Time 0.03 seconds

Isolation and Degradation Characteristics of 2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether Degrading Bacterium (2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether 분해균의 분리 및 분해특성)

  • Han, Nan-Sook;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.173-182
    • /
    • 1997
  • The bacterial strains, which utilizes 2,4,4'-trichloro-2'-hydroxydiphenyl ether(TCHDPE) as a sole carbon source, were isolated by selective enrichment culture from soil samples of industrial waste deposits. The bacterium that showed the highestt biodegradation activity was designated as EL-O47R The isolated strain EL-O47R was Identified as the genus Pseudomonas from the results of morphological, cultural, and biochemical tests. The optimum conditions of medium for the growth and the degradation of TCHDPE were TCHDPE 500 ppm, (NH4)2SO4 0.1% as the nitrogen source, initial pH 7.0±0.1, and 37℃, respectively. In this conditions, the regradation rate of TCHDPE was about 97%. Pseudomonas sp. EL-O47R was tested for resistance to several metal compounds and antibiotics. Pseudomonas sp. EL-O47R was moderately grown to Cd(NO3)2, ZnCl2, AgSO4, CuSO4 and HgCl2. This strain was sensitive to rifampicin and kanamycln but resistant to ampicillin, penicillin, tetracyclin and chloramphenlcol. Pseudomonas sp. EL-O47R was grown structurally related com- pounds and potential metabolites of TCHDPE, and has the stability on TCHDPE biodegradation.

  • PDF

Purification and some Properties of Keratinolytic Protease Produced by Pseudomonas sp. KP-364. (Pseudomonas sp. KP-364가 생산하는 Keratinolytic Pretense의 정제 및 성질)

  • 전동호;강상모;권태종
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.224-229
    • /
    • 2003
  • A keratinolytic protease was purified from the culture medium of Pseudomonas sp. KP-364 by use of an assay of the hydrolysis of feather keratin. Membrane ultrafiltration and DEAE-cellulose ion-exchange resin and Sephadex G-150 gel chromatographies were used to purify the enzyme. The specific activity of the purified keratinolytic protease relative to that in the original medium was approximately 72-fold high. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Sephadex G-150 chromatography indicated that the purified keratinolytic protease is monomeric and has a molecular weight of 36 kDa. The optimal pH and temperature of the keratinolytic protease activity were 6.6 and 37 C, respectively, and the keratinolytic protease was relatively stable at pH value from 3.0 to 10.0 at 37 C for 1hour. The keratinolytic protease was inhibited by EDTA and EGTA, indicating that the keratinolytic protease was a kind of metalloprotease that require Li+ for cofactor.

은 도핑 효과를 이용한 그래핀 투명 전도성 필름의 전기적 특성 향상

  • Jeong, Sang-Hui;Lee, Su-Il;Kim, Yu-Seok;Song, U-Seok;Kim, Seong-Hwan;Cha, Myeong-Jun;Park, Sang-Eun;Min, Gyeong-Im;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.566-566
    • /
    • 2012
  • 그래핀(Graphene)은 모든 탄소 동소체의 기본구성 요소로 2 차원 결정구조를 가지며, 양자홀 효과(quantum Hall effect), 뛰어난 열 전도도, 고 탄성, 광학적 투과성 등과 같은 탁월한 물리적 성질을 보이는 물질이다. 이러한 그래핀의 우수한 특성은 전계 효과 트랜지스터(field effect transistor), 화학/바이오 센서, 투명 전극(transparent electrode) 등의 다양한 전자소자를 개발하는 응용 가능하다. 그 중, 그래핀 투명전극의 제조는 가장 응용가능성이 높은 분야이다. 현재 투명전극 물질로는 인듐-주석 산화물(indium tin oxide; ITO)가 널리 이용되고 있으나, 인듐의 고갈로 인한 공급부족 문제 및 고 생산비용, 휘어지지 않는 취성 등의 단점을 지니고 있다. 따라서, 우수한 광학적 투과성과 전기전도성을 지닌 그래핀이 ITO의 대체 물질로서 각광받고 있다.[1-5] 본 연구에서는 그래핀의 투명전도필름의 응용을 위해 면저항을 낮추기 위한 방법으로 화학적 도핑(doping)을 이용하였다. 그래핀은 구리(copper; Cu) 호일을 촉매로 사용하여 열 화학증착법(Thermal Chemical Vapor Deposition)을 이용하여 합성하였다. 합성된 그래핀은 PMMA(Poly(methyl methacrylate)) 전사법을 이용하여 산화실리콘(SiO2) 기판에 전사 후, 염화은(AgCl)과 클로로벤젠(C6H5Cl)으로 만든 콜로이드(colloid) 용액에 디핑(dipping)하여 그래핀에 은 입자를 도핑 하였다. 그 결과, 은 입자 도핑 농도에 따라 면저항이 감소하는 양상을 보였다. 제작된 그래핀 투명전도성 필름의 투과도는 자외선-가시광선-근적외선 분광법(UV-Vis-NIR spectroscopy)를 이용하여 측정하였고, 라만 분광법(Raman spectroscopy)을 통해 그래핀 필름의 질적 우수성과 성장 균일도를 조사하였다.

  • PDF

Purification of Vibrio anguillarum Growth Inhibition Factor Produced by Bacillus amyloliquefaciens H41. (Bacillus amyloliquefaciens H41이 생산하는 Vibrio anguillarum 생육 저해인자의 정제)

  • Shin, Hyun-Chul;Chung, Kyung-Tae;Kim, Kwang-Hyun;Kim, Byung-Woo;Kwon, Hyun-Ju;Lee, Eun-Woo;Yum, Jong-Hwa;Rhu, Eun-Ju;Jeong, Yu-Jeong;Kim, Young-Hee
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.789-795
    • /
    • 2008
  • To study the possible use of probiotics in fish farming, we evaluated antagonism of antibacterial strain Bacillus amyloliquefaciens H41 against the fish pathogenic bacterium Vibrio anguillarum NCMB1. The purification of growth inhibition factor produced by B. amyloliquefaciens H41 was achieved by obtaining supernatant of this bacterium. The growth inhibition factor was purified to homogeneity by 70% ammonium sulfate precipitation, DEAE-sephadex A-50 ion exchange chromatography, sephadex G-200 gel filtration column chromatography, and sephadex G-50 gel filtration column chromatography with 40.8 fold of purification and 2.9% yield. The molecular weight of the purified growth inhibition factor was 48 kDa as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The optimum pH and temperature for the growth inhibition factor were pH 7.5 and $30^{\circ}C$, respectively. The activity of growth inhibition factor was enhanced slightly by some metal ions, such as $Mg^{+2}$, $Mn^{+2}$, but was inhibited by the addition of $Co^{+2}$, $Hg^{+2}$, $Zn^{+2}$ and $Ag^{+2}$. NaCl stability of the growth inhibition factor was observed with 50% residual activity at 3% NaCl concentration. Toxicity test showed that the purified B. amyloliquefaciens H41 growth inhibition factor did not affect the live of Japanese flounder (Paralichthys olivaceus) and the effectiveness was 78% of residual lethality compared to commercial antibacterial agents.

Effect of Several Physicochemical Factors on the Biodegradation of Acrylamide by Pseudomonas sp. JK-7 Isolated from Paddy Soil (논 토양에서 분리한 Pseudomonas sp. JK-7에 의한 Acrylamide의 생분해에 영향을 미치는 물리화학적 요인)

  • 천재우;호은미;오계헌
    • Korean Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • The purpose of this work was to investigate the relationships between acrylamide degradation by Pseudomonas sp. JK-7 and several relevant physicochemical environment parameters. In initial experiments, the bacterial culture, strain JK-7 isolated from paddy soil sample was developed to grow aerobically with acrylamide as the sole source of carbon and nitrogen. The bacterium was identified as genus Pseudomonas in the basis of use BIOLOG test, and designated as Pseudomunas sp. JK-7. Strain JK-7 could degrade 50 mM acrylamide completely within 72 hours of incubation. Major intermediates resulting from acrylamide degradation were not detected with the HPLC methodology except acrylic acid which appeared to accumulate transiently in the growth medium. The pH increased from 7.0 to 8.7 with complete degradation of the initial 50 mM acrylamide within 72 hours of incubation. pH control in the range of 5 to 9 influenced the growth of JK-7 and acrylamide degradation, whereas it was not examined the growth and degradation at pH 3 or pH 11, respectively. The effect of supplemented carbons (e.g., glucose, fructose, citrate, succinate) on the acrylamide degradation by the test culture of JK-7 was evaluated. The results indicated that the addition of carbons accelerated the bacterial growth and acrylamide degradation compared to those in the absence of supplemented carbons. The effect of supplemented nitrogens on the degradation was monitored. Increasing concentrations of yeast extract resulted in higher growth yield, based on the turbidity measurement, and complete degradation of acrylamide. However, acrylamide degradation was essentially uninfluenced by the addition of $(NH_{4})_{2}SO_{4}$, $NH_4Cl$ or urea. Addition of $AgNO_3$, $CuSO_4$ or $HgCl_2$ except $ZnSO_4$ in the test culture inhibited the degradation of acrylamide and growth of JK-7.

Characterization of Bacillus mojavensis KJS-3 for the Promotion of Plant Growth (식물 성장 촉진에 사용에 있어 Bacillus mojavensis KJS-3의 특징)

  • Kim, Kang Min;Liu, Jie;Go, Youn Suk;Kang, Jae Seon
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.910-916
    • /
    • 2015
  • Scientists have recently shown an interest in the characteristics of Bacillus mojavensis strains because of their increasing use in plants as a defense against diseases and mycotoxins. We have shown here that B. mojavensis KJS-3 possesses the typical characteristics of B. mojavensis strains including a strong resistance to high temperatures (≤50℃), tolerance to high salt concentrations (7% NaCl), ethanol tolerance (40% ethanol), and pH range for growth (pH 5-9). B. mojavensis KJS-3 has been used for the production of cyclic lipopeptides including important antifungal substances such as surfactin, iturin, and fengycin. Polymerase chain reaction analysis in this study showed that B. mojavensis KJS-3 can be used for the production of fengycin and the findings of LC-MS/MS analyses suggest that B. mojavensis KJS-3 can be used to produce iturin and surfactin. Antifungal activity analys is confirmed that B. mojavensis KJS-3 has antifungal effects on Botrytis cinerea, Rhizoctonia solani AG-4, Sclerotinia sclerotiorum, and Colletotricum goeosporioides. A microscopy assessment of the roots of wild ginseng plants planted together with B. mojavensis KJS-3 revealed that the roots contained B. mojavensis KJS-3, confirming the bacteria to be a plant growth promoting endophyte (PGPE) which acts against plant diseases and mycotoxins. Our findings lead us to conclude that B. mojavensis KJS-3 can be produced at an industrial level as a microbial pesticide or microbial fertilizer.

Studies on the Enzymatical Properties of Streptomyces sp. S-45 Isolated from Soil (토양(土壤)에서 분리(分離)한 Streptomyces sp. s-45의 효소학적(酵素學的) 성질(性質)에 관한 연구(硏究))

  • Kim, Yeong-Yil;Kim, Yong-Woong;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.2
    • /
    • pp.129-134
    • /
    • 1988
  • Enzymatical properties of Streptomyces sp. S-45 producing chitinase and ${\beta}$-1.3-glucanase isolated from soil were investigated. Chitinase activity was 3.01(U/ml) and ${\beta}$-1.3-glucanase activity was 2.49(U/ml). The optimum medium for mycolytic enzyme production of strain was composed of 0.7% colloidal chitin, 0.3% glucose, 0.5% asparagine, 0.2% peptone, 0.01% NaCl, 0.01% $K_2HPO_4$ and 0.01% $MgSO_4{\cdot}7H_2O$ in intial pH 7.0. The optimal condition for mycolytic enzyme activities were: pH 6.5-7.0, $45-50^{\circ}C$. Enzyme activities were activated by metal ion as $10^{-2}M\;Co^{{+}{+}}$, $Cu^{{+}{+}}$, $Mn^{{+}{+}}$, $Al^{{+}{+}{+}}$ and $10^{-3}M\;Sn^{{+}{+}}$ but $Ag^{{+}{+}}$, $Hg^{{+}{+}}$ inhibited.

  • PDF

Effects of Non-Invasive Constant Microcurrent Stimulation on Expression of BMP-4 After Tibia Fracture in Rabbits (비침습식 미세전류자극이 토끼 경골의 골절 후 BMP-4 발현에 미치는 영향)

  • Cho, mi-suk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1124-1129
    • /
    • 2009
  • This study aims to examine the effects of non-invasive constant microcurrent stimulation on expression of Bone Morphogenetic Protein(BMP) 4 after tibia fracture in rabbits. Twenty four rabbits with tibia fracture were randomly divided into control and experimental groups. Each group was divided into four subgroups, based on the duration of the experiment (3, 7, 14, 28 days). The experimental groups received a constant microcurrent stimulation of $20{\sim}25{\mu}A$ intensity with surface Ag-AgCl electrode (diameter 1cm, Biopac, U.S.A.) for 24 hours a day. Cathode of the microcurrent stimulator located on the tibia directly, anode of it did on the gastrocnemius muscle. Rabbits were sacrificed on each of the postoperative days 3, 7, 14, 28. To investigate how non- invasive constant microcurrent stimulation affects bone healing, immunohistochemical analysis of BMP-4 was performed at each point. After evaluation, the test results are as follows: Comparisons of immunohistochemical observation of BMP-4 in 7 days after tibial fracture show that there was shown to be a moderate positive reaction (++) on concentric circles of Harversian system andt he interstitial lamella in the control group, while there was a very strong positive reaction (++++) on concentric circles of Harversian system and interstitial lamellain the experimental group. These results suggest that applying non-invasive constant microcurrent stimulation on fractured bone is helpful to bone healing.

  • PDF

Electric Power Generation and Treatment Efficiency of Organic Matter on Hydraulic Retention Time in Microbial Fuel Cell Reactor (미생물 연료전지 반응조의 수리학적 체류시간에 따른 유기물질 처리효율과 전력생산)

  • Choi, Chansoo;Lim, Bongsu;Xu, Lei;Song, Gyuho
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.159-166
    • /
    • 2009
  • This study has been attempted to generate electricity, while simultaneously treating artificial organic wastewater using both batch and continuous microbial fuel cells (MFCs). In the batch MFC, current-voltage curve showed an onset potential of -0.69 V vs. Ag/AgCl. The potential range between this potential and 0 potential displayed an available voltage for an automatic production of electric energy and glucose, which was oxidized and treated at the same time. The 486 mg/L glucose solution showed the maximum power of $30mW/m^2$ and the maximum current density of $75mA/m^2$ shown in the power curve. As a result, discharging of the cell containing COD 423 mg/L at the constant current density of $60mA/m^2$ showed a continuous electricity generation for about 22 hours that dropped rapidly due to dissipating of organic material. Total electric energy production was 18.0 Wh. While discharging, the pH change was low and dropped from pH 6.53 to 6.20 then increased to 6.47, then stabilized at this charge. The COD treatment efficiency was found to be 72%. In the continuous MFC, COD removal tends to increase as the hydraulic retention time is increased. At one day of hydraulic retention time as the maximum value reaches the COD removal efficiency, power production rate and power production rate per COD removal that were obtained were 68.8%, $14mW/m^2$, and $20.8mW/m^2/g$ CODrm, respectively. In the continuous MFC, the power production rate per COD removal increases as the hydraulic retention time is increased and decreases as the organic loading rate is increased. At the values lower than an organic loading rate of $1kgCOD/m^3/d$, the values higher than about $18.1mW/m^2/g$ CODrm could be obtained.

Ore Minerals and Genetic Environments of Quartz Veins from the Hwawon Area, Haenam, Korea (전남 화원일대의 석영맥에서 산출되는 광석광물과 이의 생성환경)

  • Yoo, Bong-Chul;Oh, Jin-Yong;Kang, Heung-Suk;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.583-595
    • /
    • 2006
  • Quartz veins from the Hwawon area are an epithermal quartz vein that is filling the fault zone within Precambrian metasedimentary rocks and Jurassic granite. Mineralization can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals(propylitic and argillic zones) such as epidote, chlorite, illite, sericite and sulfides such as pyrite, sphalerite, chalcopyrite, galena, bornite, cubanite, argentian tetrahedrite, Pb-Ag-S system and Pb-Te-S system. Supergene stage is composed of Fe-Mn oxide, Zn-Fe oxide and Pb oxide. Fluid inclusion data indicate that homogenization temperatures and salinity of hypogene stage range from $291.2^{\circ}C$ to $397.3^{\circ}C$ and from 0.0 to 9.3 wt.% eq. NaCl, respectively. It suggests that ore forming fluids were cooled and diluted with the mixing of meteoric water. Oxygen($-0.7{\sim}3.5%_{\circ}$(white quartz: $-0.7{\sim}3.5%_{\circ}$, transparent quartz: $2.4%_{\circ}$)) and hydrogen($-70{\sim}55%_{\circ}$(white quartz: $-70{\sim}55%_{\circ}$, transparent quartz: $-62%_{\circ}$)) isotopic composition indicates that hydrothermal fluids were derived from magmatic and evolved by mixing with meteoric water during mineralization.