• 제목/요약/키워드: Ag+ solution

Search Result 664, Processing Time 0.025 seconds

The Anti-Bacterial Properties of LTP Crystallized Glass by Ag Ion Exchange (LTP계 결정화유리의 Ag이온교환에 따른 항균특성)

  • 권면주;윤영진;강원호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.183-188
    • /
    • 2002
  • Antibacterial glass ceramics composed of $5Li_2O{\cdot}36CaO{\cdot}20TiO_2{\cdot}27P_2O_5$ were Prepared. After ion exchange in the $AgNO_3$solution, crystallization phases were $AgTi_2(PO_4)_3$, $LiTi_2(PO_4)_3$ and $Ca_3(PO_4)_2$. In case of ion exchange, the crystallization phases started to be transformed from $LiTi_2(PO_4)_3$ to $AgTi_2(PO_4)_3$in 0.5 mole $AgNO_3$ solution and the transformation was almost completed in 1.0 mole. ion exchange rate of glass-ceramics powder, considering ion exchange time, was more fast than that of bulk. The bacteriostatic effect of the glass-ceramics on Staphyloroccus aureus and Salmonella typhi bacteria was more excellent than that of glass when the crystallization phase was transformed from LTP to AgTP.

  • PDF

Spectrophotometric Investigation of Silver Complex Solution with Thiomicher's Ketone

  • Hong-Wen Gao
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.7
    • /
    • pp.675-678
    • /
    • 2000
  • The reaction between silver (I) and thiomicher's ketone (TMK) was sensitive at pH 5 and 8 in the presence of non-ionic or anion surfactant. We studied the complex solution and determined the properties by beta-correction spectrophotometry, which included the complex ratio and the stability constant of the complex. The results showed that complex Ag(TMK)2 was formed in the presence of alkylphend ethoxylates (emulsifier OP) and Ag(TMK)2 was formed in the presence of sodium dodecyl benzene sulfonate (SDBS). Their real absorptivities are as follows: $\varepsilonAg(TMK)540$ = 5.23 ${\times}$ 10(4), $\varepsilonAg(TMK)2(555)$ = l.05 ${\times}$ 10(5) Lmol(-l)cm(-1) both at pH 5 and $\varepsilonAg(TMK)2(555)$ = 7,52 ${\times}$ 10(4)lmol(-1)cm(-1) at pH 8. The stability constant of complex Ag(TMK) was equal to 1.23 ${\times}$ 10(5) at pH 5 and that of Ag(TMK)2 8.29 ${\times}$ 10(9) at pH 5 and 1.15 ${\times}$ 10(11) at pH 8.

SIL VER-IMPREGNATED HAP-COATING ON ALUMINA SUBSTRATE FOR PREVENTION OF INFECTION

  • Kim, T.N.;Feng, Q.L.;Wu, J.;Kim, J.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.27-33
    • /
    • 1997
  • Recently ion beam assistant deposition (IBAD) was successfully used to produce a dense ultra-adherent and pinhole-free hydroxyapatite (HAp) layer on alumina substrate. After that the HAp-coated alumina was immersed in 20ppm and 100ppm $AgNO_3$ solution at room temperature for 48 hours to carry out the ions exchange between $Ag^+\;and\;Ca^+$ in HAp. The obvious antimicrobial effect against E.Coli, P. Aeruginosa and S. Epidermidis was observed in the samples treated with 20ppm $AgNO_3$ Solution, In contrast to this the untreated samples did not show any bactericidal effect. Scanning electron microscope(SEM) study showed that Ag homogeneously distributed on the surface. X-ray diffraction (XRD) demonstrated that the surface structure in the samples without Ag was HAp whereas with Ag is HAp and AgCaP. It appears that silver ions exchange with calcium ions in HAp does not cause significant changes in the structure of HAp coatings.

  • PDF

Effects of Pretreatment and Ag Coating Processes Conditions on the Properties of Ag-Coated Cu Flakes (Ag 코팅 Cu 플레이크의 제조에서 전처리 및 Ag 코팅 공정 변화의 효과)

  • Kim, Ji Hwan;Lee, Jong-Hyun
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.617-624
    • /
    • 2014
  • To elucidate the effects of a pretreatment process on the uniformity of Ag electroless plating on Cu flakes, pretreatment time was mainly considered with a mixed solution of 0.15 M ammonium hydroxide and 0.0375 M ammonium sulphate. Optical inspection of Ag-coated Cu flakes determined that the optimal pretreatment time is 120 s. Repetition of the sequence in which Ag plating was done immediately after the pretreatment of 120 s clearly enhanced the plating uniformity. Scanning electron microscopy revealed that holes were formed irregularly on some Cu flakes during the period from the asdropping of an Ag precursor solution to 5 min. The hole formation was judged to be due to continuous removal of Cu on the local surfaces by the repetitive formation and elimination of $Cu_2O$ or $Cu(OH)_2$ layers. However, the increase of the amount of Ag coating suppressed the hole creation and increasingly enhanced the antioxidant property.

Silver nanowires and nanodendrites synthesized by plasma discharge in solution for the catalytic oxygen reduction in alkaline media

  • Kim, Hoe-Geun;Song, Myeon-Gyu;Kim, Dong-U;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.62-62
    • /
    • 2018
  • Pt is still considered as one of the most active electrocatalysts for ORR in alkaline fuel cells. However, the high cost and scarcity of Pt hamper the widespread commercialization of fuel cells. As a strong candidate for the replacement of Pt catalyst, silver (Ag) has been extensively studied due to its high activity, abundance, and low cost. Ag is more stable than Pt in the pH range of 8~14 as the equilibrium potential of Ag/Ag+ being ${\approx}200mV$ higher than that of Pt/PtO. However, Ag is the overall catalytic activity of Ag for oxygen reduction reaction(ORR) is still not comparable to Pt catalyst since the surface Ag atoms are approximately 10 times less active than Pt atoms. Therefore, further enhancement in the ORR activity of Ag catalysts is necessary to be competitive with current cutting-edge Pt-based catalysts. We demonstrate the architectural design of Ag catalysts, synthesized using plasma discharge in liquid phase, for enhanced ORR kinetics in alkaline media. An attractive feature of this work is that the plasma status controlled via electric-field could form the Ag nanowires or dendrites without any chemical agents. The plasma reactor was made of a Teflon vessel with an inner diameter of 80 mm and a height of 80 mm, where a pair of tungsten(W) electrodes with a diameter of 2 mm was placed horizontally. The stock solutions were made by dissolving the 5-mM AgNO3 in DI water. For the synthesis of Agnanowires, the electricfield of 3.6kVcm-1 in a 200-ml AgNO3 aqueous solution was applied across the electrodes using a bipolar pulsed power supply(Kurita, Seisakusyo Co. Ltd). The repetition rate and pulse width were fixed at 30kHz and 2.0 us, respectively. The plasma discharge was carried out for a fixed reaction time of 60 min. In case of Ag nanodendrites, the electric field of 32kVcm-1 in a 200-ml AgNO3 aqueous solution was applied and other conditions were identical to the plasma discharge in water in terms of electrode configuration, repetition rate and discharge time. Using SEM and STEM, morphology of Ag nanowires and dendrites were investigated. With 3.6 kV/cm, Ag nanowire was obtained, while Ag dendrite was constructed with 32 kV/cm. The average diameter and legth of Ag nanowireses were 50 nm and 3.5 um, and thoes values of Ag dendrites were 40 nm and 3.0 um. As a results of XPS analysis, the surface defects in the Ag nanowires facilitated O2 incorporation into the surface region via the interaction between the oxygen and the electron cloud of the adjacent Ag atoms. The catalytic activity of Ag for oxygen reduction reaction(ORR) showed that the catalytic ORR activity of Ag nanowires are much better than Ag nanodendrites, and electron transfer number of Ag nanowires is similar to that of Pt (${\approx}4$).

  • PDF

Effect of the Processes of Polysilazane Solid Electrolyte Layer and Silver Active Electrode on the Electrical Characteristics of Memristor (폴리실라잔 고체 전해질 층과 은 활성 전극의 공정이 멤리스터의 전기적 특성에 미치는 영향)

  • Hui-Su Yang;Gyeong-seok Oh;Dong-Soo Kim;Jin-Hyuk Kwon;Min-Hoi Kim
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2023
  • Effect of the processes of polysilazane solid electrolyte layer and silver (Ag) active electrode on the electrical characteristics of memristor was investigated. The memristor with the solid electrolyte annealed at higher temperature exhibited the higher set voltage and better memory retention characteristics than that annealed at lower temperature. The increase in the set voltage and the improvement of the memory retention characteristic at high annealing temperature were attributed to a reduction in the void density and an increase in the void uniformity inside the solid electrolyte, respectively. In the case where the polysilazane solution's concentration is high, the memristor exhibited rapid degradation of low resistive state even annealed at high temperature. Lastly, it was shown that the memristor with the solution-processed Ag active electrode showed WORM property unlike that with the vacuum-processed Ag active electrode. The WORM property was possibly due to morphological defects present in the solution-processed Ag active electrode.

Electrochemical Desalination of a 50% w/w Sodium Hydroxide Solution, a Pharmaceutical Sterilization Agent

  • Jaehong Lee;Ji-hyun Yang;Eugene Huh;Sewon Park;Bonmoo Koo;Ik-Sung Ahn
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • Sodium hydroxide solutions are often employed as sterilization agents in the pharmaceutical industry. Here, the chloride content is considered as a critical impurity. In this study, an electrochemical method was developed to remove chloride ions (Cl-) through the oxidative deposition of AgCl on a Ag anode. The Cl- content in the commercially available 50% w/w NaOH solution employed was approximately 100 mg Cl-/kg NaOH. As the OH- content is approximately 18,000 times higher than the Cl- content, the formation of AgCl may be expected to be thermodynamically less favorable than the formation of Ag2O. However, activation energies for AgCl and Ag2O formation have been reported to be approximately 3.8 and 31.2 kJ/mol, respectively, and indicate that AgCl formation is favored. AgCl can be selectively produced by controlling the anode potential. Here, the Cl- concentration was reduced to less than 50 mg Cl-/kg NaOH when an anode potential of 0.18 or 0.19 V vs. Hg/HgO (reference electrode) was applied for one hour at 50℃. XRD analysis and visual monitoring of the Ag anode confirmed the oxidative deposition of AgCl on the anode surface as well as the electrochemical desalination of the concentrated NaOH solution.

Preparation of Sols by Carbon-arc (炭素아-크 (arc)에 依한 Sol의 生成)

  • Chang, Sei-Hun;Kim, Tai-Lin
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.7-9
    • /
    • 1957
  • On sparking carbon-arc in water we found that a inflammable gas was generated. The object of this experiment is to prepare sols of metals by applying the gas mentioned to a solution of metallic salts. As the result of this experiment we found that : 1) By this method we can prepare easily some kinds of Ag-sol from $AgNO_3$ solution in about 30 sec. by adjusting the temperature, the quantity of stabilizer and the concentration of metallic salt. 2) The appropriate concentration of $AgNO_3$ is about 0.01% by volume, that of the stabilizer, 0.9104 N-NaOH is 0.03-2 cc/100 cc of 0.01% $AgNO_3$ solution. And the lower the temperature, the more concentrated the Ag-sol. But to check the possibility of applying this method to metals other than Au and Ag, measurement of the particle size and properties of a sol prepared by this method, should be studied. Especially, we must study what kinds of gases are generated by sparking the carbon-arc in water.

  • PDF

Study of Ag-Doped Bioactive Ceramic Composites (은이 첨가된 생체 활성 세라믹 복합체 연구)

  • Nam, Ki-Young
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.761-764
    • /
    • 2009
  • Ag-Doped bioactive ceramic composites were prepared by colloidal silver solution. The physical properties of colloidal silver solution and Ag-Doped bioactive ceramic composites were characterized by Scanning electron microscopy(SEM), X-Ray Diffractometer(XRD) and Raman spectrophotometer respectively. According to XRD, we have identified that the chloride ion was chemically attached silver nano particles. SEM studies showed that silver chloride phases were homogeneously distributed on the Ag-Doped bioactive ceramic composites surface. Finally, we concluded that the silver chloride phase on the Ag-Doped bioactive ceramic composites surface was strongly prevent formation of Ag-hydroxyapatite.